HugeCTR API Documentation
- Python Interface
- About the HugeCTR Python Interface
 - High-level Training API
 - Layers
- Model
- Model class
 - add method
 - compile method
 - fit method
 - summary method
 - graph_to_json method
 - construct_from_json method
 - load_dense_weights method
 - load_dense_optimizer_states method
 - load_sparse_weights method
 - load_sparse_optimizer_states method
 - freeze_dense method
 - freeze_embedding method
 - unfreeze_dense method
 - unfreeze_embedding method
 - reset_learning_rate_scheduler method
 - set_source method
 
 
 - Model
 - Low-level Training API
- LearningRateScheduler
 - DataReader
 - EmbeddingTraingCache
 - Model
- get_learning_rate_scheduler method
 - get_embedding_training_cache method
 - get_data_reader_train method
 - get_data_reader_eval method
 - start_data_reading method
 - set_learning_rate method
 - train method
 - get_current_loss method
 - eval method
 - get_eval_metrics method
 - get_incremental_model method
 - dump_incremental_model_2kafka method
 - save_params_to_files method
 - check_out_tensor method
 - export_predictions method
 
 
 - Inference API
 - Data Generator API
 - Data Source API
 
 - Layer Classes and Methods
- Input Layer
 - Sparse Embedding
 - Embedding Types Detail
 - Dense Layers
 - Dense Layers Usage
- FullyConnected Layer
 - FusedFullyConnected Layer
 - MLP Layer
 - MultiCross Layer
 - FmOrder2 Layer
 - WeightMultiply Layer
 - ElementwiseMultiply Layer
 - BatchNorm Layer
 - LayerNorm Layer
 - Concat Layer
 - Reshape Layer
 - Slice Layer
 - Dropout Layer
 - ELU Layer
 - ReLU Layer
 - Sigmoid Layer
 - Interaction Layer
 - Add Layer
 - ReduceSum Layer
 - BinaryCrossEntropyLoss
 - CrossEntropyLoss
 - MultiCrossEntropyLoss
 
 - Embedding Collection
 - GroupDenseLayer