nvtabular.ops.Filter#
- class nvtabular.ops.Filter(f: Callable[[DataFrame], Union[DataFrame, Series]])[source]#
- Bases: - Operator- Filters rows from the dataset. This works by taking a callable that accepts a dataframe, and returns a dataframe with unwanted rows filtered out. - For example to filter out all rows that have a negative value in the - acolumn:- filtered = cont_names >> ops.Filter(f=lambda df: df["a"] >=0) processor = nvtabular.Workflow(filtered) - Parameters:
- f (callable) – Defines a function that takes a dataframe as an argument, and returns a new dataframe with unwanted rows filtered out. 
 - Methods - __init__(f)- column_mapping(col_selector)- Compute which output columns depend on which input columns - compute_column_schema(col_name, input_schema)- compute_input_schema(root_schema, ...)- Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use - compute_output_schema(input_schema, col_selector)- Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce - compute_selector(input_schema, selector[, ...])- Provides a hook method for sub-classes to override to implement custom column selection logic. - create_node(selector)- export(path, input_schema, output_schema, ...)- Export the class object as a config and all related files to the user defined path. - load_artifacts([artifact_path])- Load artifacts from disk required for operator function. - output_column_names(col_selector)- Given a set of columns names returns the names of the transformed columns this operator will produce - save_artifacts([artifact_path])- Save artifacts required to be reload operator state from disk - transform(col_selector, df)- Transform the dataframe by applying this operator to the set of input columns - validate_schemas(parents_schema, ...[, ...])- Provides a hook method that sub-classes can override to implement schema validation logic. - Attributes - dependencies- Defines an optional list of column dependencies for this operator. - dynamic_dtypes- export_name- Provides a clear common english identifier for this operator. - is_subgraph- label- output_dtype- output_properties- output_tags- supported_formats- supports- Returns what kind of data representation this operator supports - transform(col_selector: ColumnSelector, df: DataFrame) DataFrame[source]#
- Transform the dataframe by applying this operator to the set of input columns - Parameters:
- col_selector (ColumnSelector) – The columns to apply this operator to 
- transformable (Transformable) – A pandas or cudf dataframe that this operator will work on 
 
- Returns:
- Returns a transformed dataframe or dictarray for this operator 
- Return type:
- Transformable