#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import annotations
from enum import Flag, auto
from typing import TYPE_CHECKING, List, Optional, Union
from nvtabular.dispatch import DataFrameType
if TYPE_CHECKING:
# avoid circular references
from nvtabular import ColumnGroup
ColumnNames = List[Union[str, List[str]]]
class Supports(Flag):
""" Indicates what type of data representation this operator supports for transformations """
# cudf dataframe
CPU_DATAFRAME = auto()
# pandas dataframe
GPU_DATAFRAME = auto()
# dict of column name to numpy array
CPU_DICT_ARRAY = auto()
# dict of column name to cupy array
GPU_DICT_ARRAY = auto()
[docs]class Operator:
"""
Base class for all operator classes.
"""
[docs] def output_column_names(self, columns: ColumnNames) -> ColumnNames:
"""Given a set of columns names returns the names of the transformed columns this
operator will produce
Parameters
-----------
columns: list of str, or list of list of str
The columns to apply this operator to
Returns
-------
list of str, or list of list of str
The names of columns produced by this operator
"""
return columns
[docs] def dependencies(self) -> Optional[List[Union[str, ColumnGroup]]]:
"""Defines an optional list of column dependencies for this operator. This lets you consume columns
that aren't part of the main transformation workflow.
Returns
-------
str, list of str or ColumnGroup, optional
Extra dependencies of this operator. Defaults to None
"""
return None
def __rrshift__(self, other) -> ColumnGroup:
import nvtabular
return nvtabular.ColumnGroup(other) >> self
@property
def label(self) -> str:
return self.__class__.__name__
@property
def supports(self) -> Supports:
""" Returns what kind of data representation this operator supports """
return Supports.CPU_DATAFRAME | Supports.GPU_DATAFRAME
[docs] def inference_initialize(self, columns: ColumnNames, model_config: dict) -> Optional[Operator]:
"""Configures this operator for use in inference. May return a different operator to use
instead of the one configured for use during training"""
return None