Source code for nvtabular.workflow

#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import os
import sys
import time
import warnings
from typing import TYPE_CHECKING, Optional

import cloudpickle

try:
    import cudf
except ImportError:
    cudf = None
import dask
import pandas as pd
from dask.core import flatten

from nvtabular.column_group import ColumnGroup, _merge_add_nodes, iter_nodes
from nvtabular.dispatch import _concat_columns
from nvtabular.io.dataset import Dataset
from nvtabular.ops import StatOperator
from nvtabular.utils import _ensure_optimize_dataframe_graph, global_dask_client
from nvtabular.worker import clean_worker_cache

LOG = logging.getLogger("nvtabular")


if TYPE_CHECKING:
    import distributed


[docs]class Workflow: """ The Workflow class applies a graph of operations onto a dataset, letting you transform datasets to do feature engineering and preprocessing operations. This class follows an API similar to Transformers in sklearn: we first ``fit`` the workflow by calculating statistics on the dataset, and then once fit we can ``transform`` datasets by applying these statistics. Example usage:: # define a graph of operations cat_features = CAT_COLUMNS >> nvtabular.ops.Categorify() cont_features = CONT_COLUMNS >> nvtabular.ops.FillMissing() >> nvtabular.ops.Normalize() workflow = nvtabular.Workflow(cat_features + cont_features + "label") # calculate statistics on the training dataset workflow.fit(nvtabular.io.Dataset(TRAIN_PATH)) # transform the training and validation datasets and write out as parquet workflow.transform(nvtabular.io.Dataset(TRAIN_PATH)).to_parquet(output_path=TRAIN_OUT_PATH) workflow.transform(nvtabular.io.Dataset(VALID_PATH)).to_parquet(output_path=VALID_OUT_PATH) Parameters ---------- column_group: ColumnGroup The graph of operators this workflow should apply client: distributed.Client, optional The Dask distributed client to use for multi-gpu processing and multi-node processing """ def __init__(self, column_group: ColumnGroup, client: Optional["distributed.Client"] = None): self.column_group = _merge_add_nodes(column_group) self.client = client self.input_dtypes = None self.output_dtypes = None # Warn user if there is an unused global # Dask client available if global_dask_client(self.client): warnings.warn( "A global dask.distributed client has been detected, but the " "single-threaded scheduler will be used for execution. Please " "use the `client` argument to initialize a `Workflow` object " "with distributed-execution enabled." )
[docs] def transform(self, dataset: Dataset) -> Dataset: """Transforms the dataset by applying the graph of operators to it. Requires the ``fit`` method to have already been called, or calculated statistics to be loaded from disk This method returns a Dataset object, with the transformations lazily loaded. None of the actual computation will happen until the produced Dataset is consumed, or written out to disk. Parameters ----------- dataset: Dataset Returns ------- Dataset """ self._clear_worker_cache() ddf = dataset.to_ddf(columns=self._input_columns()) return Dataset( _transform_ddf(ddf, self.column_group, self.output_dtypes), client=self.client, cpu=dataset.cpu, base_dataset=dataset.base_dataset, )
[docs] def fit(self, dataset: Dataset): """Calculates statistics for this workflow on the input dataset Parameters ----------- dataset: Dataset The input dataset to calculate statistics for. If there is a train/test split this data should be the training dataset only. """ self._clear_worker_cache() ddf = dataset.to_ddf(columns=self._input_columns()) # Get a dictionary mapping all StatOperators we need to fit to a set of any dependant # StatOperators (having StatOperators that depend on the output of other StatOperators # means that will have multiple phases in the fit cycle here) stat_ops = {op: _get_stat_ops(op.parents) for op in _get_stat_ops([self.column_group])} while stat_ops: # get all the StatOperators that we can currently call fit on (no outstanding # dependencies) current_phase = [op for op, dependencies in stat_ops.items() if not dependencies] if not current_phase: # this shouldn't happen, but lets not infinite loop just in case raise RuntimeError("failed to find dependency-free StatOperator to fit") stats, ops = [], [] for column_group in current_phase: # apply transforms necessary for the inputs to the current column group, ignoring # the transforms from the statop itself transformed_ddf = _ensure_optimize_dataframe_graph( ddf=_transform_ddf(ddf, column_group.parents) ) op = column_group.op try: stats.append(op.fit(column_group.input_column_names, transformed_ddf)) ops.append(op) except Exception: LOG.exception("Failed to fit operator %s", column_group.op) raise if self.client: results = [r.result() for r in self.client.compute(stats)] else: results = dask.compute(stats, scheduler="synchronous")[0] for computed_stats, op in zip(results, ops): op.fit_finalize(computed_stats) # Remove all the operators we processed in this phase, and remove # from the dependencies of other ops too for stat_op in current_phase: stat_ops.pop(stat_op) for dependencies in stat_ops.values(): dependencies.difference_update(current_phase) # hack: store input/output dtypes here. We should have complete dtype # information for each operator (like we do for column names), but as # an interim solution this gets us what we need. input_dtypes = dataset.to_ddf()[self._input_columns()].dtypes self.input_dtypes = dict(zip(input_dtypes.index, input_dtypes)) output_dtypes = self.transform(dataset).sample_dtypes() self.output_dtypes = dict(zip(output_dtypes.index, output_dtypes))
[docs] def fit_transform(self, dataset: Dataset) -> Dataset: """Convenience method to both fit the workflow and transform the dataset in a single call. Equivalent to calling ``workflow.fit(dataset)`` followed by ``workflow.transform(dataset)`` Parameters ----------- dataset: Dataset Returns ------- Dataset """ self.fit(dataset) return self.transform(dataset)
[docs] def save(self, path): """Save this workflow to disk Parameters ---------- path: str The path to save the workflow to """ # avoid a circular import getting the version from nvtabular import __version__ as nvt_version os.makedirs(path, exist_ok=True) # point all stat ops to store intermediate output (parquet etc) at the path # this lets us easily bundle for stat in _get_stat_ops([self.column_group]): stat.op.set_storage_path(path, copy=True) # generate a file of all versions used to generate this bundle lib = cudf if cudf else pd with open(os.path.join(path, "metadata.json"), "w") as o: json.dump( { "versions": { "nvtabular": nvt_version, lib.__name__: lib.__version__, "python": sys.version, }, "generated_timestamp": int(time.time()), }, o, ) # dump out the full workflow (graph/stats/operators etc) using cloudpickle with open(os.path.join(path, "workflow.pkl"), "wb") as o: cloudpickle.dump(self, o)
[docs] @classmethod def load(cls, path, client=None): """Load up a saved workflow object from disk Parameters ---------- path: str The path to load the workflow from client: distributed.Client, optional The Dask distributed client to use for multi-gpu processing and multi-node processing Returns ------- Workflow """ # avoid a circular import getting the version from nvtabular import __version__ as nvt_version # check version information from the metadata blob, and warn if we have a mismatch meta = json.load(open(os.path.join(path, "metadata.json"))) def parse_version(version): return version.split(".")[:2] def check_version(stored, current, name): if parse_version(stored) != parse_version(current): warnings.warn( f"Loading workflow generated with {name} version {stored} " f"- but we are running {name} {current}. This might cause issues" ) # make sure we don't have any major/minor version conflicts between the stored worklflow # and the current environment lib = cudf if cudf else pd versions = meta["versions"] check_version(versions["nvtabular"], nvt_version, "nvtabular") check_version(versions["python"], sys.version, "python") if lib.__name__ in versions: check_version(versions[lib.__name__], lib.__version__, lib.__name__) else: expected = "GPU" if "cudf" in versions else "CPU" warnings.warn(f"Loading workflow generated on {expected}") # load up the workflow object di workflow = cloudpickle.load(open(os.path.join(path, "workflow.pkl"), "rb")) workflow.client = client # we might have been copied since saving, update all the stat ops # with the new path to their storage locations for stat in _get_stat_ops([workflow.column_group]): stat.op.set_storage_path(path, copy=False) return workflow
def __getstate__(self): # dask client objects aren't picklable - exclude from saved representation return {k: v for k, v in self.__dict__.items() if k != "client"} def clear_stats(self): for stat in _get_stat_ops([self.column_group]): stat.op.clear() def _input_columns(self): input_nodes = set(node for node in iter_nodes([self.column_group]) if not node.parents) return list(set(col for node in input_nodes for col in node.flattened_columns)) def _clear_worker_cache(self): # Clear worker caches to be "safe" if self.client: self.client.run(clean_worker_cache) else: clean_worker_cache()
def _transform_ddf(ddf, column_groups, meta=None): if isinstance(column_groups, ColumnGroup): column_groups = [column_groups] columns = list(flatten(cg.flattened_columns for cg in column_groups)) # Check if we are only selecting columns (no transforms). # If so, we should perform column selection at the ddf level. # Otherwise, Dask will not push the column selection into the # IO function. if all((c.op is None and not c.parents) for c in column_groups): return ddf[_get_unique(columns)] if isinstance(meta, dict) and isinstance(ddf._meta, pd.DataFrame): dtypes = meta meta = type(ddf._meta)({k: [] for k in columns}) for column, dtype in dtypes.items(): meta[column] = meta[column].astype(dtype) elif not meta: # TODO: constructing meta like this loses dtype information on the ddf # and sets it all to 'float64'. We should propogate dtype information along # with column names in the columngroup graph. This currently only # happesn during intermediate 'fit' transforms, so as long as statoperators # don't require dtype information on the DDF this doesn't matter all that much meta = type(ddf._meta)({k: [] for k in columns}) return ddf.map_partitions( _transform_partition, column_groups, meta=meta, ) def _get_stat_ops(nodes): return set(node for node in iter_nodes(nodes) if isinstance(node.op, StatOperator)) def _get_unique(cols): # Need to preserve order in unique-column list return list({x: x for x in cols}.keys()) def _transform_partition(root_df, column_groups): """Transforms a single partition by appyling all operators in a ColumnGroup""" output = None for column_group in column_groups: unique_flattened_cols = _get_unique(column_group.flattened_columns) # collect dependencies recursively if we have parents if column_group.parents: df = None columns = None for parent in column_group.parents: unique_flattened_cols_parent = _get_unique(parent.flattened_columns) parent_df = _transform_partition(root_df, [parent]) if df is None or not len(df): df = parent_df[unique_flattened_cols_parent] columns = set(unique_flattened_cols_parent) else: new_columns = set(unique_flattened_cols_parent) - columns df = _concat_columns([df, parent_df[list(new_columns)]]) columns.update(new_columns) else: # otherwise select the input from the root df df = root_df[unique_flattened_cols] # apply the operator if necessary if column_group.op: try: df = column_group.op.transform(column_group.input_column_names, df) except Exception: LOG.exception("Failed to transform operator %s", column_group.op) raise if df is None: raise RuntimeError( "Operator %s didn't return a value during transform" % column_group.op ) # dask needs output to be in the same order defined as meta, reorder partitions here # this also selects columns (handling the case of removing columns from the output using # "-" overload) if output is None: output = df[unique_flattened_cols] else: output = _concat_columns([output, df[unique_flattened_cols]]) return output