nvtabular.ops.LambdaOp
-
class
nvtabular.ops.
LambdaOp
(f, dependency=None, label=None, dtype=None, tags=None, properties=None)[source] Bases:
nvtabular.ops.operator.Operator
LambdaOp allows you to apply row level functions to an NVTabular workflow.
Example usage 1:
# Define a ColumnSelector that LamdaOp will apply to # then define a custom function, e.g. extract first 5 character from a string lambda_feature = ColumnSelector(["col1"]) new_lambda_feature = lambda_feature >> (lambda col: col.str.slice(0, 5)) processor = nvtabular.Workflow(new_lambda_feature + 'label')
Example usage 2:
# define a custom function e.g. calculate probability for different events. # Rename the each new feature column name. lambda_features = ColumnSelector(['event1', 'event2', 'event3']), # columns, f is applied to def cond_prob(col, gdf): col = col.astype(np.float32) col = col / gdf['total_events'] return col new_lambda_features = lambda_features >> LambdaOp(cond_prob, dependency=["total_events"]) >> Rename(postfix="_cond") processor = nvtabular.Workflow(new_lambda_features + 'label')
- Parameters
f (callable) – Defines a function that takes a Series and an optional DataFrame as input, and returns a new Series as the output.
dependency (list, default None) – Whether to provide a dependency column or not.
Methods
__init__
(f[, dependency, label, dtype, …])column_mapping
(col_selector)compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use :param root_schema: Base schema of the dataset before running any operators.
compute_output_schema
(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce :param input_schema: The schemas of the columns to apply this operator to :type input_schema: Schema :param col_selector: The column selector to apply to the input schema :type col_selector: ColumnSelector
compute_selector
(input_schema, selector, …)create_node
(selector)inference_initialize
(col_selector, model_config)Configures this operator for use in inference.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce :param columns: The columns to apply this operator to :type columns: list of str, or list of list of str
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
Attributes
supports
Returns what kind of data representation this operator supports
-
transform
(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame
-
property
dependencies
-
property
label
-
property
dynamic_dtypes
-
property
output_dtype
-
property
output_properties