nvtabular.ops.FillMedian
-
class
nvtabular.ops.
FillMedian
(add_binary_cols=False)[source] Bases:
nvtabular.ops.stat_operator.StatOperator
This operation replaces missing values with the median value for the column.
Example usage:
# Use FillMedian in a workflow for continuous columns cont_features = ['cont1', 'cont2', 'cont3'] >> ops.FillMedian() processor = nvtabular.Workflow(cont_features)
- Parameters
add_binary_cols (boolean, default False) – When True, adds binary columns that indicate whether cells in each column were filled
Methods
__init__
([add_binary_cols])clear
()column_mapping
(col_selector)compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use :param root_schema: Base schema of the dataset before running any operators.
compute_output_schema
(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce :param input_schema: The schemas of the columns to apply this operator to :type input_schema: Schema :param col_selector: The column selector to apply to the input schema :type col_selector: ColumnSelector
compute_selector
(input_schema, selector, …)create_node
(selector)fit
(col_selector, ddf)Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.
fit_finalize
(dask_stats)Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’
inference_initialize
(col_selector, model_config)Configures this operator for use in inference.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce :param columns: The columns to apply this operator to :type columns: list of str, or list of list of str
set_storage_path
(new_path[, copy])Certain stat operators need external storage - for instance Categorify writes out parquet files containing the categorical mapping.
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
Attributes
dependencies
Defines an optional list of column dependencies for this operator.
dynamic_dtypes
label
output_dtype
output_properties
output_tags
supports
Returns what kind of data representation this operator supports
-
transform
(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame
-
fit
(col_selector: merlin.dag.selector.ColumnSelector, ddf: dask.dataframe.core.DataFrame)[source] Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.