nvtabular.ops.Clip
-
class
nvtabular.ops.Clip(min_value=None, max_value=None)[source] Bases:
nvtabular.ops.operator.OperatorThis operation clips continuous values so that they are within a min/max bound. For instance by setting the min value to 0, you can replace all negative values with 0. This is helpful in cases where you want to log normalize values:
# clip all continuous columns to be positive only, and then take the log of the clipped # columns columns = ColumnSelector(CONT_NAMES) >> Clip(min_value=0) >> LogOp()
- Parameters
min_value (float, default None) – The minimum value to clip values to: values less than this will be replaced with this value. Specifying
Nonemeans don’t apply a minimum threshold.max_value (float, default None) – The maximum value to clip values to: values greater than this will be replaced with this value. Specifying
Nonemeans don’t apply a maximum threshold.
Methods
__init__([min_value, max_value])column_mapping(col_selector)compute_column_schema(col_name, input_schema)compute_input_schema(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use :param root_schema: Base schema of the dataset before running any operators.
compute_output_schema(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce :param input_schema: The schemas of the columns to apply this operator to :type input_schema: Schema :param col_selector: The column selector to apply to the input schema :type col_selector: ColumnSelector
compute_selector(input_schema, selector, …)create_node(selector)inference_initialize(col_selector, model_config)Configures this operator for use in inference.
output_column_names(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce :param columns: The columns to apply this operator to :type columns: list of str, or list of list of str
transform(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
Attributes
dependenciesDefines an optional list of column dependencies for this operator.
dynamic_dtypeslabeloutput_dtypeoutput_propertiesoutput_tagssupportsReturns what kind of data representation this operator supports
-
transform(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame