nvtabular.ops.StatOperator

class nvtabular.ops.StatOperator[source]

Bases: nvtabular.ops.operator.Operator

Base class for statistical operator classes. This adds a ‘fit’ and ‘finalize’ method on top of the Operator class.

__init__()

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__()

Initialize self.

clear()

zero and reinitialize all relevant statistical properties

column_mapping(col_selector)

compute_column_schema(col_name, input_schema)

compute_input_schema(root_schema, …)

Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use :param root_schema: Base schema of the dataset before running any operators.

compute_output_schema(input_schema, col_selector)

Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce :param input_schema: The schemas of the columns to apply this operator to :type input_schema: Schema :param col_selector: The column selector to apply to the input schema :type col_selector: ColumnSelector

compute_selector(input_schema, selector, …)

create_node(selector)

fit(col_selector, ddf)

Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.

fit_finalize(dask_stats)

Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’

inference_initialize(col_selector, model_config)

Configures this operator for use in inference.

output_column_names(col_selector)

Given a set of columns names returns the names of the transformed columns this operator will produce :param columns: The columns to apply this operator to :type columns: list of str, or list of list of str

set_storage_path(new_path[, copy])

Certain stat operators need external storage - for instance Categorify writes out parquet files containing the categorical mapping.

transform(col_selector, df)

Transform the dataframe by applying this operator to the set of input columns

Attributes

dependencies

Defines an optional list of column dependencies for this operator.

dynamic_dtypes

label

output_dtype

output_properties

output_tags

supports

Returns what kind of data representation this operator supports

fit(col_selector: merlin.dag.selector.ColumnSelector, ddf: dask.dataframe.core.DataFrame)Any[source]

Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.

fit_finalize(dask_stats)[source]

Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’

clear()[source]

zero and reinitialize all relevant statistical properties

set_storage_path(new_path, copy=False)[source]

Certain stat operators need external storage - for instance Categorify writes out parquet files containing the categorical mapping. When we save the operator, we also want to save these files as part of the bundle. Implementing this method lets statoperators bundle their dependent files into the new path that we’re writing out (note that this could happen after the operator is created)