nvtabular.ops.Clip
-
class
nvtabular.ops.
Clip
(min_value=None, max_value=None)[source] Bases:
nvtabular.ops.operator.Operator
This operation clips continuous values so that they are within a min/max bound. For instance by setting the min value to 0, you can replace all negative values with 0. This is helpful in cases where you want to log normalize values:
# clip all continuous columns to be positive only, and then take the log of the clipped # columns columns = ColumnSelector(CONT_NAMES) >> Clip(min_value=0) >> LogOp()
- Parameters
min_value (float, default None) – The minimum value to clip values to: values less than this will be replaced with this value. Specifying
None
means don’t apply a minimum threshold.max_value (float, default None) – The maximum value to clip values to: values greater than this will be replaced with this value. Specifying
None
means don’t apply a maximum threshold.
Methods
__init__
([min_value, max_value])column_mapping
(col_selector)Compute which output columns depend on which input columns
compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema
(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector
(input_schema, selector[, …])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node
(selector)inference_initialize
(col_selector, model_config)Configures this operator for use in inference.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
validate_schemas
(parents_schema, …[, …])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependencies
Defines an optional list of column dependencies for this operator.
dynamic_dtypes
label
output_dtype
output_properties
output_tags
supports
Returns what kind of data representation this operator supports
-
transform
(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame