nvtabular.ops.ListSlice
-
class
nvtabular.ops.
ListSlice
(start, end=None, pad=False, pad_value=0.0)[source] Bases:
nvtabular.ops.operator.Operator
Slices a list column
This operator provides the ability to slice list column by row. For example, to truncate a list column to only include the first 10 elements per row:
truncated = column_names >> ops.ListSlice(10)
Take the first 10 items, ignoring the first element:
truncated = column_names >> ops.ListSlice(1, 11)
Take the last 10 items from each row:
truncated = column_names >> ops.ListSlice(-10)
- Parameters
start (int) – The starting value to slice from if end isn’t given, otherwise the end value to slice to
end (int, optional) – The end value to slice to
pad (bool, default False) – Whether to pad out rows to have the same number of elements. If not set rows may not all have the same number of entries.
pad_value (float) – When pad=True, this is the value used to pad missing entries
Methods
__init__
(start[, end, pad, pad_value])column_mapping
(col_selector)Compute which output columns depend on which input columns
compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema
(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector
(input_schema, selector[, …])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node
(selector)inference_initialize
(col_selector, model_config)Configures this operator for use in inference.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
validate_schemas
(parents_schema, …[, …])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependencies
Defines an optional list of column dependencies for this operator.
dynamic_dtypes
label
output_dtype
output_properties
supported_formats
supports
Returns what kind of data representation this operator supports
-
transform
(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame