#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import numpy
from merlin.core.dispatch import DataFrameType, annotate, is_dataframe_object
from merlin.schema import Tags
from nvtabular.ops.operator import ColumnSelector, Operator
[docs]class DifferenceLag(Operator):
"""Calculates the difference between two consecutive rows of the dataset. For instance, this
operator can calculate the time since a user last had another interaction.
This requires a dataset partitioned by one set of columns (userid) and sorted further by another
set (userid, timestamp). The dataset must already be partitioned and sorted before being passed
to the workflow. This can be easily done using dask-cudf::
# get a nvt dataset and convert to a dask dataframe
ddf = nvtabular.Dataset(PATHS).to_ddf()
# partition the dask dataframe by userid, then sort by userid/timestamp
ddf = ddf.shuffle("userid").sort_values(["userid", "timestamp"])
# create a new nvtabular dataset on the partitioned/sorted values
dataset = nvtabular.Dataset(ddf)
Once passed an appropriate dataset, this operator can be used to create a workflow to
compute the lagged difference within a partition::
# compute the delta in timestamp for each users session
diff_features = ["quantity"] >> ops.DifferenceLag(partition_cols=["userid"], shift=[1, -1])
processor = nvtabular.Workflow(diff_features)
Parameters
-----------
partition_cols : str or list of str
Column or Columns that are used to partition the data.
shift : int, default 1
The number of rows to look backwards when computing the difference lag. Negative values
indicate the number of rows to look forwards, making this compute the lead instead of lag.
"""
[docs] def __init__(self, partition_cols, shift=1):
super(DifferenceLag, self).__init__()
if isinstance(partition_cols, str):
partition_cols = [partition_cols]
self.partition_cols = partition_cols
self.shifts = [shift] if isinstance(shift, int) else shift
transform.__doc__ = Operator.transform.__doc__
@property
def dependencies(self):
return self.partition_cols
[docs] def column_mapping(self, col_selector):
column_mapping = {}
for col in col_selector.names:
for shift in self.shifts:
output_col_name = self._column_name(col, shift)
column_mapping[output_col_name] = [col]
return column_mapping
@property
def output_tags(self):
return [Tags.CONTINUOUS]
@property
def output_dtype(self):
return numpy.float32
def _column_name(self, col, shift):
return f"{col}_difference_lag_{shift}"