nvtabular.ops.NormalizeMinMax
-
class
nvtabular.ops.NormalizeMinMax(out_dtype=None)[source] Bases:
nvtabular.ops.stat_operator.StatOperatorThis operator standardizes continuous features such that they are between 0 and 1.
Example usage:
# Use NormalizeMinMax to define a NVTabular workflow cont_features = CONTINUOUS_COLUMNS >> ops.NormalizeMinMax() processor = nvtabular.Workflow(cont_features)
- Parameters
out_dtype (str, default is float64) – dtype of output columns.
Methods
__init__([out_dtype])clear()column_mapping(col_selector)Compute which output columns depend on which input columns
compute_column_schema(col_name, input_schema)compute_input_schema(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector(input_schema, selector[, …])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node(selector)fit(col_selector, ddf)Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.
fit_finalize(dask_stats)Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’
inference_initialize(col_selector, model_config)Configures this operator for use in inference.
output_column_names(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
set_storage_path(new_path[, copy])Certain stat operators need external storage - for instance Categorify writes out parquet files containing the categorical mapping.
transform(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
validate_schemas(parents_schema, …[, …])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependenciesDefines an optional list of column dependencies for this operator.
dynamic_dtypesis_subgraphlabeloutput_propertiessupported_formats-
transform(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame)[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame
-
fit(col_selector: merlin.dag.selector.ColumnSelector, ddf)[source] Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.
-
fit_finalize(dask_stats)[source] Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’
-
property
supports
-
property
output_dtype