nvtabular.ops.FillMissing
-
class
nvtabular.ops.
FillMissing
(fill_val=0, add_binary_cols=False)[source] Bases:
nvtabular.ops.operator.Operator
This operation replaces missing values with a constant pre-defined value
Example usage:
# Use FillMissing to define a workflow for continuous columns and specify the fill value # Default is 0 cont_features = ['cont1', 'cont2', 'cont3'] >> ops.FillMissing() >> ... processor = nvtabular.Workflow(cont_features)
- Parameters
fill_val (float, default 0) – The constant value to replace missing values with.
add_binary_cols (boolean, default False) – When True, adds binary columns that indicate whether cells in each column were filled
Methods
__init__
([fill_val, add_binary_cols])column_mapping
(col_selector)compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema
(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector
(input_schema, selector[, …])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node
(selector)inference_initialize
(col_selector, …)load up extra configuration about this op.
load_artifacts
([artifact_path])Load artifacts from disk required for operator function.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
save_artifacts
([artifact_path])Save artifacts required to be reload operator state from disk
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
validate_schemas
(parents_schema, …[, …])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependencies
Defines an optional list of column dependencies for this operator.
dynamic_dtypes
is_subgraph
label
output_dtype
output_properties
output_tags
supported_formats
supports
Returns what kind of data representation this operator supports
-
transform
(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame