nvtabular.ops.NormalizeMinMax

class nvtabular.ops.NormalizeMinMax(out_dtype=None)[source]

Bases: nvtabular.ops.stat_operator.StatOperator

This operator standardizes continuous features such that they are between 0 and 1.

Example usage:

# Use NormalizeMinMax to define a NVTabular workflow
cont_features = CONTINUOUS_COLUMNS >> ops.NormalizeMinMax()
processor = nvtabular.Workflow(cont_features)
Parameters

out_dtype (str, default is float64) – dtype of output columns.

__init__(out_dtype=None)[source]

Methods

__init__([out_dtype])

clear()

column_mapping(col_selector)

Compute which output columns depend on which input columns

compute_column_schema(col_name, input_schema)

compute_input_schema(root_schema, …)

Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use

compute_output_schema(input_schema, col_selector)

Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce

compute_selector(input_schema, selector[, …])

Provides a hook method for sub-classes to override to implement custom column selection logic.

create_node(selector)

fit(col_selector, ddf)

Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.

fit_finalize(dask_stats)

Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’

inference_initialize(col_selector, model_config)

Configures this operator for use in inference.

load_artifacts([artifact_path])

Load artifacts from disk required for operator function.

output_column_names(col_selector)

Given a set of columns names returns the names of the transformed columns this operator will produce

save_artifacts([artifact_path])

Save artifacts required to be reload operator state from disk

set_storage_path(new_path[, copy])

Certain stat operators need external storage - for instance Categorify writes out parquet files containing the categorical mapping.

transform(col_selector, df)

Transform the dataframe by applying this operator to the set of input columns

validate_schemas(parents_schema, …[, …])

Provides a hook method that sub-classes can override to implement schema validation logic.

Attributes

dependencies

Defines an optional list of column dependencies for this operator.

dynamic_dtypes

is_subgraph

label

output_dtype

output_properties

output_tags

supported_formats

supports

transform(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame)[source]

Transform the dataframe by applying this operator to the set of input columns

Parameters
  • columns (list of str or list of list of str) – The columns to apply this operator to

  • df (Dataframe) – A pandas or cudf dataframe that this operator will work on

Returns

Returns a transformed dataframe for this operator

Return type

DataFrame

fit(col_selector: merlin.dag.selector.ColumnSelector, ddf)[source]

Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.

fit_finalize(dask_stats)[source]

Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’

clear()[source]
property supports
property output_tags
property output_dtype