nvtabular.ops.ReduceDtypeSize
-
class
nvtabular.ops.
ReduceDtypeSize
(float_dtype=<class 'numpy.float32'>)[source] Bases:
nvtabular.ops.stat_operator.StatOperator
ReduceDtypeSize changes the dtypes of numeric columns. For integer columns this will choose a dtype such that the minimum and maximum values in the column will fit. For float columns this will cast to a float32.
Methods
__init__
([float_dtype])clear
()zero and reinitialize all relevant statistical properties
column_mapping
(col_selector)Compute which output columns depend on which input columns
compute_column_schema
(col_name, input_schema)compute_input_schema
(root_schema, …)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema
(input_schema, selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector
(input_schema, selector[, …])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node
(selector)fit
(col_selector, ddf)Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.
fit_finalize
(dask_stats)Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’
inference_initialize
(col_selector, model_config)Configures this operator for use in inference.
load_artifacts
([artifact_path])Load artifacts from disk required for operator function.
output_column_names
(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
save_artifacts
([artifact_path])Save artifacts required to be reload operator state from disk
set_storage_path
(new_path[, copy])Certain stat operators need external storage - for instance Categorify writes out parquet files containing the categorical mapping.
transform
(col_selector, df)Transform the dataframe by applying this operator to the set of input columns
validate_schemas
(parents_schema, …[, …])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependencies
Defines an optional list of column dependencies for this operator.
dynamic_dtypes
is_subgraph
label
output_dtype
output_properties
output_tags
supported_formats
supports
Returns what kind of data representation this operator supports
-
fit
(col_selector: merlin.dag.selector.ColumnSelector, ddf: dask.dataframe.core.DataFrame)[source] Calculate statistics for this operator, and return a dask future to these statistics, which will be computed by the workflow.
-
fit_finalize
(dask_stats)[source] Finalize statistics calculation - the workflow calls this function with the computed statistics from the ‘fit’ object’
-
transform
(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source] Transform the dataframe by applying this operator to the set of input columns
- Parameters
columns (list of str or list of list of str) – The columns to apply this operator to
df (Dataframe) – A pandas or cudf dataframe that this operator will work on
- Returns
Returns a transformed dataframe for this operator
- Return type
DataFrame
-
compute_output_schema
(input_schema, selector, prev_output_schema=None)[source] Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
- Parameters
input_schema (Schema) – The schemas of the columns to apply this operator to
col_selector (ColumnSelector) – The column selector to apply to the input schema
- Returns
The schemas of the columns produced by this operator
- Return type
Schema
-