Source code for nvtabular.ops.drop_low_cardinality
#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from merlin.core.dispatch import DataFrameType
from merlin.schema import Schema, Tags
from nvtabular.ops.operator import ColumnSelector, Operator
[docs]class DropLowCardinality(Operator):
"""
DropLowCardinality drops low cardinality categorical columns. This requires the
cardinality of these columns to be known in the schema - for instance by
first encoding these columns using Categorify.
"""
[docs] def __init__(self, min_cardinality=2):
super().__init__()
self.min_cardinality = min_cardinality
[docs] def compute_selector(
self,
input_schema: Schema,
selector: ColumnSelector,
parents_selector: ColumnSelector,
dependencies_selector: ColumnSelector,
) -> ColumnSelector:
"""
Checks the cardinality of the input columns and drops any categorical
columns with cardinality less than the specified minimum.
Parameters
----------
input_schema : Schema
The current node's input schema
selector : ColumnSelector
The current node's selector
parents_selector : ColumnSelector
A selector for the output columns of the current node's parents
dependencies_selector : ColumnSelector
A selector for the output columns of the current node's dependencies
Returns
-------
ColumnSelector
Selector that contains all non-categorical columns and any categorical columns
of at least the minimum cardinality.
"""
self._validate_matching_cols(input_schema, selector, self.compute_selector.__name__)
cols_to_keep = [col for col in input_schema if Tags.CATEGORICAL not in col.tags]
for col in input_schema:
if Tags.CATEGORICAL in col.tags:
domain = col.int_domain
if not domain or domain.max >= self.min_cardinality:
cols_to_keep.append(col.name)
return ColumnSelector(cols_to_keep)