nvtabular.ops.DropLowCardinality#
- class nvtabular.ops.DropLowCardinality(min_cardinality=2)[source]#
Bases:
OperatorDropLowCardinality drops low cardinality categorical columns. This requires the cardinality of these columns to be known in the schema - for instance by first encoding these columns using Categorify.
Methods
__init__([min_cardinality])column_mapping(col_selector)Compute which output columns depend on which input columns
compute_column_schema(col_name, input_schema)compute_input_schema(root_schema, ...)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector(input_schema, selector, ...)Checks the cardinality of the input columns and drops any categorical columns with cardinality less than the specified minimum.
create_node(selector)export(path, input_schema, output_schema, ...)Export the class object as a config and all related files to the user defined path.
inference_initialize(col_selector, model_config)Configures this operator for use in inference.
load_artifacts([artifact_path])Load artifacts from disk required for operator function.
output_column_names(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
save_artifacts([artifact_path])Save artifacts required to be reload operator state from disk
transform(col_selector, df)Selects all non-categorical columns and any categorical columns of at least the minimum cardinality from the dataframe.
validate_schemas(parents_schema, ...[, ...])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependenciesDefines an optional list of column dependencies for this operator.
dynamic_dtypesexport_nameProvides a clear common english identifier for this operator.
is_subgraphlabeloutput_dtypeoutput_propertiesoutput_tagssupported_formatssupportsReturns what kind of data representation this operator supports
- transform(col_selector: ColumnSelector, df: DataFrame) DataFrame[source]#
Selects all non-categorical columns and any categorical columns of at least the minimum cardinality from the dataframe.
- Parameters:
col_selector (ColumnSelector) – The columns to select.
df (DataFrameType) – The dataframe to transform
- Returns:
Dataframe with only the selected columns.
- Return type:
DataFrameType
- compute_selector(input_schema: Schema, selector: ColumnSelector, parents_selector: ColumnSelector, dependencies_selector: ColumnSelector) ColumnSelector[source]#
Checks the cardinality of the input columns and drops any categorical columns with cardinality less than the specified minimum.
- Parameters:
input_schema (Schema) – The current node’s input schema
selector (ColumnSelector) – The current node’s selector
parents_selector (ColumnSelector) – A selector for the output columns of the current node’s parents
dependencies_selector (ColumnSelector) – A selector for the output columns of the current node’s dependencies
- Returns:
Selector that contains all non-categorical columns and any categorical columns of at least the minimum cardinality.
- Return type:
ColumnSelector