nvtabular.ops.Dropna
- 
class nvtabular.ops.Dropna[source]
- Bases: - nvtabular.ops.operator.Operator- This operation detects and filters out rows with missing values. - Example usage: - # Use Dropna to define a NVTabular workflow # Default is None and will check all columns dropna_features = ['cat1', 'num1'] >> ops.Dropna() >> ... processor = nvtabular.Workflow(dropna_features) - 
__init__()
- Initialize self. See help(type(self)) for accurate signature. 
 - Methods - __init__()- Initialize self. - column_mapping(col_selector)- Compute which output columns depend on which input columns - compute_column_schema(col_name, input_schema)- compute_input_schema(root_schema, …)- Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use - compute_output_schema(input_schema, col_selector)- Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce - compute_selector(input_schema, selector[, …])- Provides a hook method for sub-classes to override to implement custom column selection logic. - create_node(selector)- inference_initialize(col_selector, model_config)- Configures this operator for use in inference. - output_column_names(col_selector)- Given a set of columns names returns the names of the transformed columns this operator will produce - transform(col_selector, df)- Transform the dataframe by applying this operator to the set of input columns - validate_schemas(parents_schema, …[, …])- Provides a hook method that sub-classes can override to implement schema validation logic. - Attributes - dependencies- Defines an optional list of column dependencies for this operator. - dynamic_dtypes- label- output_dtype- output_properties- output_tags- supported_formats- supports- Returns what kind of data representation this operator supports - 
transform(col_selector: merlin.dag.selector.ColumnSelector, df: pandas.core.frame.DataFrame) → pandas.core.frame.DataFrame[source]
- Transform the dataframe by applying this operator to the set of input columns - Parameters
- columns (list of str or list of list of str) – The columns to apply this operator to 
- df (Dataframe) – A pandas or cudf dataframe that this operator will work on 
 
- Returns
- Returns a transformed dataframe for this operator 
- Return type
- DataFrame 
 
 
-