Source code for transformers4rec.tf.features.sequence

#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from typing import Dict, Optional, Union

import tensorflow as tf

from merlin_standard_lib import Schema, Tag
from merlin_standard_lib.utils.doc_utils import docstring_parameter

from ..block.base import Block, SequentialBlock
from ..block.mlp import MLPBlock
from ..masking import MaskSequence, masking_registry
from ..tabular.base import (
    TABULAR_MODULE_PARAMS_DOCSTRING,
    AsTabular,
    TabularAggregationType,
    TabularBlock,
    TabularTransformationType,
)
from ..utils import tf_utils
from . import embedding
from .tabular import TABULAR_FEATURES_PARAMS_DOCSTRING, TabularFeatures


[docs]@docstring_parameter( tabular_module_parameters=TABULAR_MODULE_PARAMS_DOCSTRING, embedding_features_parameters=embedding.EMBEDDING_FEATURES_PARAMS_DOCSTRING, ) @tf.keras.utils.register_keras_serializable(package="transformers4rec") class SequenceEmbeddingFeatures(embedding.EmbeddingFeatures): """Input block for embedding-lookups for categorical features. This module produces 3-D tensors, this is useful for sequential models like transformers. Parameters ---------- {embedding_features_parameters} padding_idx: int The symbol to use for padding. {tabular_module_parameters} """ def __init__( self, feature_config: Dict[str, embedding.FeatureConfig], item_id: Optional[str] = None, mask_zero: bool = True, padding_idx: int = 0, pre: Optional[TabularTransformationType] = None, post: Optional[TabularTransformationType] = None, aggregation: Optional[TabularAggregationType] = None, schema: Optional[Schema] = None, name: Optional[str] = None, **kwargs ): super().__init__( feature_config, item_id=item_id, pre=pre, post=post, aggregation=aggregation, schema=schema, name=name, **kwargs, ) self.padding_idx = padding_idx self.mask_zero = mask_zero
[docs] def lookup_feature(self, name, val, **kwargs): return super(SequenceEmbeddingFeatures, self).lookup_feature( name, val, output_sequence=True )
[docs] def compute_call_output_shape(self, input_shapes): batch_size = self.calculate_batch_size_from_input_shapes(input_shapes) sequence_length = input_shapes[list(self.feature_config.keys())[0]][1] output_shapes = {} for name, val in input_shapes.items(): output_shapes[name] = tf.TensorShape( [batch_size, sequence_length, self.feature_config[name].table.dim] ) return output_shapes
[docs] def compute_mask(self, inputs, mask=None): if not self.mask_zero: return None outputs = {} for key, val in inputs.items(): outputs[key] = tf.not_equal(val, self.padding_idx) return outputs
[docs] def get_config(self): config = super().get_config() config["mask_zero"] = self.mask_zero config["padding_idx"] = self.padding_idx return config
[docs]@docstring_parameter( tabular_module_parameters=TABULAR_MODULE_PARAMS_DOCSTRING, tabular_features_parameters=TABULAR_FEATURES_PARAMS_DOCSTRING, ) @tf.keras.utils.register_keras_serializable(package="transformers4rec") class TabularSequenceFeatures(TabularFeatures): """Input module that combines different types of features to a sequence: continuous, categorical & text. Parameters ---------- {tabular_features_parameters} projection_module: BlockOrModule, optional Module that's used to project the output of this module, typically done by an MLPBlock. masking: MaskSequence, optional Masking to apply to the inputs. {tabular_module_parameters} """ EMBEDDING_MODULE_CLASS = SequenceEmbeddingFeatures def __init__( self, continuous_layer: Optional[TabularBlock] = None, categorical_layer: Optional[TabularBlock] = None, text_embedding_layer: Optional[TabularBlock] = None, projection_block: Optional[Block] = None, masking: Optional[MaskSequence] = None, pre: Optional[TabularTransformationType] = None, post: Optional[TabularTransformationType] = None, aggregation: Optional[TabularAggregationType] = None, name=None, **kwargs ): super().__init__( continuous_layer=continuous_layer, categorical_layer=categorical_layer, text_embedding_layer=text_embedding_layer, pre=pre, post=post, aggregation=aggregation, name=name, **kwargs, ) self.projection_block = projection_block self.set_masking(masking)
[docs] @classmethod def from_schema( # type: ignore cls, schema: Schema, continuous_tags=(Tag.CONTINUOUS,), categorical_tags=(Tag.CATEGORICAL,), aggregation=None, max_sequence_length=None, continuous_projection=None, projection=None, d_output=None, masking=None, **kwargs ) -> "TabularSequenceFeatures": """Instantiates ``TabularFeatures`` from a ``DatasetSchema`` Parameters ---------- schema : DatasetSchema Dataset schema continuous_tags : Optional[Union[DefaultTags, list, str]], optional Tags to filter the continuous features, by default Tag.CONTINUOUS categorical_tags : Optional[Union[DefaultTags, list, str]], optional Tags to filter the categorical features, by default Tag.CATEGORICAL aggregation : Optional[str], optional Feature aggregation option, by default None automatic_build : bool, optional Automatically infers input size from features, by default True max_sequence_length : Optional[int], optional Maximum sequence length for list features by default None continuous_projection : Optional[Union[List[int], int]], optional If set, concatenate all numerical features and project them by a number of MLP layers The argument accepts a list with the dimensions of the MLP layers, by default None projection: Optional[torch.nn.Module, BuildableBlock], optional If set, project the aggregated embeddings vectors into hidden dimension vector space, by default None d_output: Optional[int], optional If set, init a MLPBlock as projection module to project embeddings vectors, by default None masking: Optional[Union[str, MaskSequence]], optional If set, Apply masking to the input embeddings and compute masked labels, It requires a categorical_module including an item_id column, by default None Returns ------- TabularFeatures: Returns ``TabularFeatures`` from a dataset schema""" output = super().from_schema( schema=schema, continuous_tags=continuous_tags, categorical_tags=categorical_tags, aggregation=aggregation, max_sequence_length=max_sequence_length, continuous_projection=continuous_projection, **kwargs, ) if d_output and projection: raise ValueError("You cannot specify both d_output and projection at the same time") if (projection or masking or d_output) and not aggregation: # TODO: print warning here for clarity output.set_aggregation("concat") # hidden_size = output.output_size() if d_output and not projection: projection = MLPBlock([d_output]) if projection: output.projection_block = projection if isinstance(masking, str): masking = masking_registry.parse(masking)(**kwargs) if masking and not getattr(output, "item_id", None): raise ValueError("For masking a categorical_module is required including an item_id.") output.set_masking(masking) return output
[docs] def project_continuous_features(self, dimensions): if isinstance(dimensions, int): dimensions = [dimensions] continuous = self.continuous_layer continuous.set_aggregation("concat") continuous = SequentialBlock( [continuous, MLPBlock(dimensions), AsTabular("continuous_projection")] ) self.to_merge["continuous_layer"] = continuous return self
[docs] def call(self, inputs, training=True): outputs = super(TabularSequenceFeatures, self).call(inputs) if self.masking or self.projection_block: outputs = self.aggregation(outputs) if self.projection_block: outputs = self.projection_block(outputs) if self.masking: outputs = self.masking( outputs, item_ids=self.to_merge["categorical_layer"].item_seq, training=training ) return outputs
[docs] def compute_call_output_shape(self, input_shape): output_shapes = {} for layer in self.merge_values: output_shapes.update(layer.compute_output_shape(input_shape)) return output_shapes
[docs] def compute_output_shape(self, input_shapes): output_shapes = super().compute_output_shape(input_shapes) if self.projection_block: output_shapes = self.projection_block.compute_output_shape(output_shapes) return output_shapes
@property def masking(self): return self._masking
[docs] def set_masking(self, value): self._masking = value
@property def item_id(self) -> Optional[str]: if "categorical_layer" in self.to_merge_dict: return getattr(self.to_merge_dict["categorical_layer"], "item_id", None) return None @property def item_embedding_table(self): if "categorical_layer" in self.to_merge_dict: return getattr(self.to_merge_dict["categorical_layer"], "item_embedding_table", None) return None
[docs] def get_config(self): config = super().get_config() config = tf_utils.maybe_serialize_keras_objects( self, config, ["projection_block", "masking"] ) return config
[docs] @classmethod def from_config(cls, config, **kwargs): config = tf_utils.maybe_deserialize_keras_objects(config, ["projection_block", "masking"]) return super().from_config(config)
TabularFeaturesType = Union[TabularSequenceFeatures, TabularFeatures]