Source code for transformers4rec.tf.layers.outer_product

# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import tensorflow as tf


[docs]class XDeepFmOuterProduct(tf.keras.layers.Layer): """ Layer implementing the outer product transformation used in the Compressed Interaction Network (CIN) proposed in in https://arxiv.org/abs/1803.05170. Treats the feature dimension H_k of a B x H_k x D feature embedding tensor as a feature map of the D embedding elements, and computes element-wise multiplication interaction between these maps and those from an initial input tensor x_0 before taking the inner product with a parameter matrix. Parameters ------------ dim : int Feature dimension of the layer. Output will be of shape (batch_size, dim, embedding_dim) """ def __init__(self, dim, **kwargs): self.dim = dim super().__init__(**kwargs)
[docs] def build(self, input_shapes): if not isinstance(input_shapes[0], (tuple, tf.TensorShape)): raise ValueError("Should be called on a list of inputs.") if len(input_shapes) != 2: raise ValueError("Should only have two inputs, found {}".format(len(input_shapes))) for shape in input_shapes: if len(shape) != 3: raise ValueError("Found shape {} without 3 dimensions".format(shape)) if input_shapes[0][-1] != input_shapes[1][-1]: raise ValueError( "Last dimension should match, found dimensions {} and {}".format( input_shapes[0][-1], input_shapes[1][-1] ) ) # H_k x H_{k-1} x m shape = (self.dim, input_shapes[0][1], input_shapes[1][1]) self.kernel = self.add_weight( name="kernel", initializer="glorot_uniform", trainable=True, shape=shape ) self.built = True
[docs] def call(self, inputs): """ Parameters ------------ inputs : array-like(tf.Tensor) The two input tensors, the first of which should be the output of the previous layer, and the second of which should be the input to the CIN. """ x_k_minus_1, x_0 = inputs # need to do shape manipulations so that we # can do element-wise multiply x_k_minus_1 = tf.expand_dims(x_k_minus_1, axis=2) # B x H_{k-1} x 1 x D x_k_minus_1 = tf.tile(x_k_minus_1, [1, 1, x_0.shape[1], 1]) # B x H_{k-1} x m x D x_k_minus_1 = tf.transpose(x_k_minus_1, (1, 0, 2, 3)) # H_{k-1} x B x m x D z_k = x_k_minus_1 * x_0 # H_{k-1} x B x m x D z_k = tf.transpose(z_k, (1, 0, 2, 3)) # B x H_{k-1} x m x D # now we need to map to B x H_k x D x_k = tf.tensordot(self.kernel, z_k, axes=[[1, 2], [1, 2]]) x_k = tf.transpose(x_k, (1, 0, 2)) return x_k
[docs] def compute_output_shape(self, input_shapes): return (input_shapes[0][0], self.dim, input_shapes[0][2])