#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import transformers
from merlin_standard_lib import Registry
transformer_registry: Registry = Registry("transformers")
[docs]class T4RecConfig:
[docs] def to_huggingface_torch_model(self):
model_cls = transformers.MODEL_MAPPING[self.transformers_config_cls]
return model_cls(self)
[docs] def to_torch_model(
self,
input_features,
*prediction_task,
task_blocks=None,
task_weights=None,
loss_reduction="mean",
**kwargs
):
from .. import torch as torch4rec
if not isinstance(input_features, torch4rec.TabularSequenceFeatures):
raise ValueError("`input_features` must an instance of SequentialTabularFeatures")
if not all(isinstance(t, torch4rec.PredictionTask) for t in prediction_task):
raise ValueError(
"`task` is of the wrong type, please provide one or multiple "
"instance(s) of PredictionTask"
)
body = torch4rec.SequentialBlock(
input_features, torch4rec.TransformerBlock(self, masking=input_features.masking)
)
return torch4rec.Head(
body,
*prediction_task,
task_blocks=task_blocks,
task_weights=task_weights,
loss_reduction=loss_reduction,
).to_model(**kwargs)
@property
def transformers_config_cls(self):
return self.__class__.__bases__[1]
[docs] @classmethod
def build(cls, *args, **kwargs):
raise NotImplementedError
[docs]@transformer_registry.register("gtp2")
class GPT2Config(T4RecConfig, transformers.GPT2Config):
[docs] @classmethod
def build(
cls,
d_model,
n_head,
n_layer,
total_seq_length,
hidden_act="gelu",
initializer_range=0.01,
layer_norm_eps=0.03,
dropout=0.3,
pad_token=0,
log_attention_weights=False,
**kwargs
):
return cls(
n_embd=d_model,
n_inner=d_model * 4,
n_layer=n_layer,
n_head=n_head,
activation_function=hidden_act,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
resid_pdrop=dropout,
embd_pdrop=dropout,
attn_pdrop=dropout,
n_positions=total_seq_length,
n_ctx=total_seq_length,
output_attentions=log_attention_weights,
vocab_size=1,
**kwargs,
)
[docs]@transformer_registry.register("electra")
class ElectraConfig(T4RecConfig, transformers.ElectraConfig):
[docs] @classmethod
def build(
cls,
d_model,
n_head,
n_layer,
total_seq_length,
hidden_act="gelu",
initializer_range=0.01,
layer_norm_eps=0.03,
dropout=0.3,
pad_token=0,
log_attention_weights=False,
**kwargs
):
# To account for target positions at inference mode, we extend the maximum sequence length.
total_seq_length = total_seq_length + 2
return cls(
hidden_size=d_model,
embedding_size=d_model,
num_hidden_layers=n_layer,
num_attention_heads=n_head,
intermediate_size=d_model * 4,
hidden_act=hidden_act,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
hidden_dropout_prob=dropout,
max_position_embeddings=total_seq_length,
pad_token_id=pad_token,
output_attentions=log_attention_weights,
vocab_size=1,
**kwargs,
)
[docs]@transformer_registry.register("albert")
class AlbertConfig(T4RecConfig, transformers.AlbertConfig):
[docs] @classmethod
def build(
cls,
d_model,
n_head,
n_layer,
total_seq_length,
hidden_act="gelu",
initializer_range=0.01,
layer_norm_eps=0.03,
dropout=0.3,
pad_token=0,
log_attention_weights=False,
**kwargs
):
# To account for target positions at inference mode, we extend the maximum sequence length.
total_seq_length = total_seq_length + 2
return cls(
hidden_size=d_model,
num_attention_heads=n_head,
num_hidden_layers=n_layer,
hidden_act=hidden_act,
intermediate_size=d_model * 4,
hidden_dropout_prob=dropout,
attention_probs_dropout_prob=dropout,
max_position_embeddings=total_seq_length,
embedding_size=d_model, # should be same as dimension of the input to ALBERT
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
output_attentions=log_attention_weights,
vocab_size=1,
**kwargs,
)
[docs]@transformer_registry.register("xlnet")
class XLNetConfig(T4RecConfig, transformers.XLNetConfig):
[docs] @classmethod
def build(
cls,
d_model,
n_head,
n_layer,
total_seq_length=None,
attn_type="bi",
hidden_act="gelu",
initializer_range=0.01,
layer_norm_eps=0.03,
dropout=0.3,
pad_token=0,
log_attention_weights=False,
mem_len=1,
**kwargs
):
return cls(
d_model=d_model,
d_inner=d_model * 4,
n_layer=n_layer,
n_head=n_head,
attn_type=attn_type,
ff_activation=hidden_act,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
dropout=dropout,
pad_token_id=pad_token,
output_attentions=log_attention_weights,
vocab_size=1,
mem_len=mem_len,
**kwargs,
)
[docs]@transformer_registry.register("bert")
class BertConfig(T4RecConfig, transformers.BertConfig):
[docs] @classmethod
def build(
cls,
d_model,
n_head,
n_layer,
total_seq_length,
hidden_act="gelu",
initializer_range=0.01,
layer_norm_eps=0.03,
dropout=0.3,
pad_token=0,
log_attention_weights=False,
**kwargs
):
# To account for target positions at inference mode, we extend the maximum sequence length.
total_seq_length = total_seq_length + 2
return cls(
hidden_size=d_model,
num_hidden_layers=n_layer,
num_attention_heads=n_head,
hidden_act=hidden_act,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
dropout=dropout,
pad_token_id=pad_token,
output_attentions=log_attention_weights,
max_position_embeddings=total_seq_length,
vocab_size=1,
**kwargs,
)
[docs]@transformer_registry.register("roberta")
class RobertaConfig(T4RecConfig, transformers.RobertaConfig):
[docs] @classmethod
def build(
cls,
d_model,
n_head,
n_layer,
total_seq_length,
hidden_act="gelu",
initializer_range=0.01,
layer_norm_eps=0.03,
dropout=0.3,
pad_token=0,
log_attention_weights=False,
**kwargs
):
# To account for target positions at inference mode, we extend the maximum sequence length.
total_seq_length = total_seq_length + 2
return cls(
hidden_size=d_model,
num_hidden_layers=n_layer,
num_attention_heads=n_head,
hidden_act=hidden_act,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
dropout=dropout,
pad_token_id=pad_token,
output_attentions=log_attention_weights,
max_position_embeddings=total_seq_length,
vocab_size=1,
**kwargs,
)
[docs]@transformer_registry.register("transfo-xl")
class TransfoXLConfig(T4RecConfig, transformers.TransfoXLConfig):
[docs] @classmethod
def build(
cls,
d_model,
n_head,
n_layer,
total_seq_length,
hidden_act="gelu",
initializer_range=0.01,
layer_norm_eps=0.03,
dropout=0.3,
pad_token=0,
log_attention_weights=False,
**kwargs
):
return cls(
d_model=d_model,
d_embed=d_model,
n_layer=n_layer,
n_head=n_head,
d_inner=d_model * 4,
hidden_act=hidden_act,
untie_r=True,
attn_type=0,
initializer_range=initializer_range,
layer_norm_eps=layer_norm_eps,
dropout=dropout,
pad_token_id=pad_token,
output_attentions=log_attention_weights,
vocab_size=1, # As the input_embeds will be fed in the forward function, limits the memory reserved by the internal input embedding table, which will not be used
mem_len=1, # We do not use mems, because we feed the full sequence to the Transformer models and not sliding segments (which is useful for the long sequences in NLP. As setting mem_len to 0 leads to NaN in loss, we set it to one, to minimize the computing overhead)
div_val=1, # Disables adaptative input (embeddings), because the embeddings are managed by TabularFeatures
**kwargs,
)