# Copyright 2022 NVIDIA Corporation. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Each user is responsible for checking the content of datasets and the
# applicable licenses and determining if suitable for the intended use.
ETL with NVTabular
This notebook is created using the latest stable merlin-pytorch container.
Launch the docker container
docker run -it --gpus device=0 -p 8000:8000 -p 8001:8001 -p 8002:8002 -p 8888:8888 -v <path_to_data>:/workspace/data/ nvcr.io/nvidia/merlin/merlin-pytorch:22.XX
This script will mount your local data folder that includes your data files to /workspace/data
directory in the merlin-pytorch docker container.
Overview
This notebook demonstrates how to use NVTabular to perform the feature engineering that is needed to model the YOOCHOOSE
dataset which contains a collection of sessions from a retailer. Each session encapsulates the click events that the user performed in that session.
The dataset is available on Kaggle. You need to download it and copy to the DATA_FOLDER
path. Note that we are only using the yoochoose-clicks.dat
file.
First, let’s start by importing several libraries:
import os
import glob
import numpy as np
import gc
import cudf
import cupy
import nvtabular as nvt
from merlin.dag import ColumnSelector
from merlin.schema import Schema, Tags
Define Data Input and Output Paths
DATA_FOLDER = "/workspace/data/"
FILENAME_PATTERN = 'yoochoose-clicks.dat'
DATA_PATH = os.path.join(DATA_FOLDER, FILENAME_PATTERN)
OUTPUT_FOLDER = "./yoochoose_transformed"
OVERWRITE = False
Load and clean raw data
interactions_df = cudf.read_csv(DATA_PATH, sep=',',
names=['session_id','timestamp', 'item_id', 'category'],
dtype=['int', 'datetime64[s]', 'int', 'int'])
Remove repeated interactions within the same session
print("Count with in-session repeated interactions: {}".format(len(interactions_df)))
# Sorts the dataframe by session and timestamp, to remove consecutive repetitions
interactions_df.timestamp = interactions_df.timestamp.astype(int)
interactions_df = interactions_df.sort_values(['session_id', 'timestamp'])
past_ids = interactions_df['item_id'].shift(1).fillna()
session_past_ids = interactions_df['session_id'].shift(1).fillna()
# Keeping only no consecutive repeated in session interactions
interactions_df = interactions_df[~((interactions_df['session_id'] == session_past_ids) & (interactions_df['item_id'] == past_ids))]
print("Count after removed in-session repeated interactions: {}".format(len(interactions_df)))
Count with in-session repeated interactions: 33003944
Count after removed in-session repeated interactions: 28971543
Create new feature with the timestamp when the item was first seen
items_first_ts_df = interactions_df.groupby('item_id').agg({'timestamp': 'min'}).reset_index().rename(columns={'timestamp': 'itemid_ts_first'})
interactions_merged_df = interactions_df.merge(items_first_ts_df, on=['item_id'], how='left')
interactions_merged_df.head()
session_id | timestamp | item_id | category | itemid_ts_first | |
---|---|---|---|---|---|
0 | 4993 | 1396727816 | 214835285 | 0 | 1396332436 |
1 | 4993 | 1396727863 | 214530703 | 0 | 1396339114 |
2 | 4993 | 1396727898 | 214530705 | 0 | 1396330224 |
3 | 4993 | 1396728063 | 214835713 | 0 | 1396327474 |
4 | 4993 | 1396730097 | 214512611 | 0 | 1396328044 |
Let’s save the interactions_merged_df to disk to be able to use in the inference step.
interactions_merged_df.to_parquet(os.path.join(DATA_FOLDER, 'interactions_merged_df.parquet'))
# free gpu memory
del interactions_df, session_past_ids, items_first_ts_df
gc.collect()
518
Define a preprocessing workflow with NVTabular
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems. It provides a high level abstraction to simplify code and accelerates computation on the GPU using the RAPIDS cuDF library.
NVTabular supports different feature engineering transformations required by deep learning (DL) models such as Categorical encoding and numerical feature normalization. It also supports feature engineering and generating sequential features.
More information about the supported features can be found here.
Feature engineering: Create and Transform items features
In this cell, we are defining three transformations ops:
Encoding categorical variables using
Categorify()
op. We setstart_index
to 1 so that encoded null values start from1
instead of0
because we reserve0
for padding the sequence features.
Deriving temporal features from timestamp and computing their cyclical representation using a custom lambda function.
Computing the item recency in days using a custom op. Note that item recency is defined as the difference between the first occurrence of the item in dataset and the actual date of item interaction.
For more ETL workflow examples, visit NVTabular example notebooks.
# Encodes categorical features as contiguous integers
cat_feats = ColumnSelector(['session_id', 'category', 'item_id']) >> nvt.ops.Categorify(start_index=1)
# create time features
session_ts = ColumnSelector(['timestamp'])
session_time = (
session_ts >>
nvt.ops.LambdaOp(lambda col: cudf.to_datetime(col, unit='s')) >>
nvt.ops.Rename(name = 'event_time_dt')
)
sessiontime_weekday = (
session_time >>
nvt.ops.LambdaOp(lambda col: col.dt.weekday) >>
nvt.ops.Rename(name ='et_dayofweek')
)
# Derive cyclical features: Define a custom lambda function
def get_cycled_feature_value_sin(col, max_value):
value_scaled = (col + 0.000001) / max_value
value_sin = np.sin(2*np.pi*value_scaled)
return value_sin
weekday_sin = sessiontime_weekday >> (lambda col: get_cycled_feature_value_sin(col+1, 7)) >> nvt.ops.Rename(name = 'et_dayofweek_sin')
# Compute Item recency: Define a custom Op
class ItemRecency(nvt.ops.Operator):
def transform(self, columns, gdf):
for column in columns.names:
col = gdf[column]
item_first_timestamp = gdf['itemid_ts_first']
delta_days = (col - item_first_timestamp) / (60*60*24)
gdf[column + "_age_days"] = delta_days * (delta_days >=0)
return gdf
def compute_selector(
self,
input_schema: Schema,
selector: ColumnSelector,
parents_selector: ColumnSelector,
dependencies_selector: ColumnSelector,
) -> ColumnSelector:
self._validate_matching_cols(input_schema, parents_selector, "computing input selector")
return parents_selector
def column_mapping(self, col_selector):
column_mapping = {}
for col_name in col_selector.names:
column_mapping[col_name + "_age_days"] = [col_name]
return column_mapping
@property
def dependencies(self):
return ["itemid_ts_first"]
@property
def output_dtype(self):
return np.float64
recency_features = session_ts >> ItemRecency()
# Apply standardization to this continuous feature
recency_features_norm = recency_features >> nvt.ops.LogOp() >> nvt.ops.Normalize(out_dtype=np.float32) >> nvt.ops.Rename(name='product_recency_days_log_norm')
time_features = (
session_time +
sessiontime_weekday +
weekday_sin +
recency_features_norm
)
features = ColumnSelector(['timestamp', 'session_id']) + cat_feats + time_features
Define the preprocessing of sequential features
Once the item features are generated, the objective of this cell is to group interactions at the session level, sorting the interactions by time. We additionally truncate all sessions to first 20 interactions and filter out sessions with less than 2 interactions.
# Define Groupby Operator
groupby_features = features >> nvt.ops.Groupby(
groupby_cols=["session_id"],
sort_cols=["timestamp"],
aggs={
'item_id': ["list", "count"],
'category': ["list"],
'timestamp': ["first"],
'event_time_dt': ["first"],
'et_dayofweek_sin': ["list"],
'product_recency_days_log_norm': ["list"]
},
name_sep="-") >> nvt.ops.AddMetadata(tags=[Tags.CATEGORICAL])
# Truncate sequence features to first interacted 20 items
SESSIONS_MAX_LENGTH = 20
groupby_features_list = groupby_features['item_id-list', 'category-list', 'et_dayofweek_sin-list', 'product_recency_days_log_norm-list']
groupby_features_truncated = groupby_features_list >> nvt.ops.ListSlice(0, SESSIONS_MAX_LENGTH, pad=True) >> nvt.ops.Rename(postfix = '_seq')
# Calculate session day index based on 'event_time_dt-first' column
day_index = ((groupby_features['event_time_dt-first']) >>
nvt.ops.LambdaOp(lambda col: (col - col.min()).dt.days +1) >>
nvt.ops.Rename(f = lambda col: "day_index")
)
# Select features for training
selected_features = groupby_features['session_id', 'item_id-count'] + groupby_features_truncated + day_index
# Filter out sessions with less than 2 interactions
MINIMUM_SESSION_LENGTH = 2
filtered_sessions = selected_features >> nvt.ops.Filter(f=lambda df: df["item_id-count"] >= MINIMUM_SESSION_LENGTH)
Avoid Numba low occupancy warnings:
from numba import config
config.CUDA_LOW_OCCUPANCY_WARNINGS = 0
Execute NVTabular workflow
Once we have defined the general workflow (filtered_sessions
), we provide our cudf dataset to nvt.Dataset
class which is optimized to split data into chunks that can fit in device memory and to handle the calculation of complex global statistics. Then, we execute the pipeline that fits and transforms data to get the desired output features.
dataset = nvt.Dataset(interactions_merged_df)
workflow = nvt.Workflow(filtered_sessions)
# Learn features statistics necessary of the preprocessing workflow
workflow.fit(dataset)
# Apply the preprocessing workflow in the dataset and convert the resulting Dask cudf dataframe to a cudf dataframe
sessions_gdf = workflow.transform(dataset).compute()
Let’s print the head of our preprocessed dataset. You can notice that now each example (row) is a session and the sequential features with respect to user interactions were converted to lists with matching length.
sessions_gdf.head()
session_id | item_id-count | item_id-list_seq | category-list_seq | et_dayofweek_sin-list_seq | product_recency_days_log_norm-list_seq | day_index | |
---|---|---|---|---|---|---|---|
0 | 2 | 200 | [2223, 2125, 1800, 123, 3030, 1861, 1076, 1285... | [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... | [1.1285199e-06, 1.1285199e-06, 1.1285199e-06, ... | [-1.1126341, -0.9665389, -0.1350116, -0.127809... | 27 |
1 | 3 | 200 | [34959, 24004, 32503, 39480, 28132, 47339, 351... | [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... | [0.43388295, 0.43388295, 0.43388295, 0.4338829... | [0.3110803, 0.475488, -3.0278225, -3.0278225, ... | 58 |
2 | 4 | 200 | [23212, 30448, 16468, 2052, 22490, 31097, 6243... | [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... | [0.9749277, 0.9749277, 0.9749277, 0.9749277, 0... | [0.6801631, 0.7174695, 0.7185285, 0.7204116, 0... | 71 |
3 | 5 | 200 | [230, 451, 732, 1268, 2014, 567, 497, 439, 338... | [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, ... | [0.43388295, 0.43388295, 0.43388295, 0.4338829... | [1.3680888, -0.6530481, -0.69314253, -0.590593... | 149 |
4 | 6 | 200 | [23, 70, 160, 70, 90, 742, 851, 359, 734, 878,... | [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... | [0.43388295, 0.43388295, 0.43388295, 0.4338829... | [1.3714824, 1.3715883, 1.3715737, 1.3715955, 1... | 149 |
Save the preprocessing workflow
workflow.save('workflow_etl')
Export pre-processed data by day
In this example we are going to split the preprocessed parquet files by days, to allow for temporal training and evaluation. There will be a folder for each day and three parquet files within each day: train.parquet
, validation.parquet
and test.parquet
.
P.s. It is worthwhile to note that the dataset has a single categorical feature (category), which, however, is inconsistent over time in the dataset. All interactions before day 84 (2014-06-23) have the same value for that feature, whereas many other categories are introduced afterwards. Thus for this example, we save only the last five days.
sessions_gdf = sessions_gdf[sessions_gdf.day_index>=178]
from transformers4rec.data.preprocessing import save_time_based_splits
save_time_based_splits(data=nvt.Dataset(sessions_gdf),
output_dir= "./preproc_sessions_by_day",
partition_col='day_index',
timestamp_col='session_id',
)
Creating time-based splits: 100%|██████████| 5/5 [00:00<00:00, 5.99it/s]
def list_files(startpath):
"""
Util function to print the nested structure of a directory
"""
for root, dirs, files in os.walk(startpath):
level = root.replace(startpath, "").count(os.sep)
indent = " " * 4 * (level)
print("{}{}/".format(indent, os.path.basename(root)))
subindent = " " * 4 * (level + 1)
for f in files:
print("{}{}".format(subindent, f))
list_files('./preproc_sessions_by_day')
preproc_sessions_by_day/
179/
valid.parquet
test.parquet
train.parquet
180/
valid.parquet
test.parquet
train.parquet
178/
valid.parquet
test.parquet
train.parquet
182/
valid.parquet
test.parquet
train.parquet
181/
valid.parquet
test.parquet
train.parquet
# free gpu memory
del sessions_gdf
gc.collect()
578
That’s it! We created our sequential features, now we can go to the next notebook to train a PyTorch session-based model.