transformers4rec.torch.utils package
Submodules
transformers4rec.torch.utils.data_utils module
-
class
transformers4rec.torch.utils.data_utils.
T4RecDataLoader
[source] Bases:
abc.ABC
Base Helper class to build dataloader from the schema with properties required by T4Rec Trainer class.
-
classmethod
from_schema
(schema: merlin_standard_lib.schema.schema.Schema, paths_or_dataset, batch_size, max_sequence_length, **kwargs)[source]
-
classmethod
-
class
transformers4rec.torch.utils.data_utils.
PyarrowDataLoader
(paths_or_dataset, batch_size, max_sequence_length, cols_to_read=None, target_names=None, shuffle=False, shuffle_buffer_size=0, num_workers=1, pin_memory=True, drop_last=False, **kwargs)[source] Bases:
Generic
[torch.utils.data.dataloader.T_co
]-
set_dataset
(cols_to_read, target_names)[source] set the Parquet dataset
- Parameters
cols_to_read (str) – The list of features names to load
-
classmethod
from_schema
(schema, paths_or_dataset, batch_size, max_sequence_length, continuous_features=None, categorical_features=None, targets=None, shuffle=False, shuffle_buffer_size=0, num_workers=1, pin_memory=True, **kwargs)[source] Instantiates
PyarrowDataLoader
from aDatasetSchema
.
-
dataset
: torch.utils.data.dataset.Dataset[T_co]
-
sampler
: Union[torch.utils.data.sampler.Sampler, Iterable]
-
-
class
transformers4rec.torch.utils.data_utils.
DLDataLoader
(*args, **kwargs)[source] Bases:
Generic
[torch.utils.data.dataloader.T_co
]This class is an extension of the torch dataloader. It is required to support the FastAI framework.
Setting the batch size directly to DLDataLoader makes it 3x slower. So we set as an alternative attribute and use it within T4Rec Trainer during evaluation # TODO : run experiments with new merlin-dataloader
-
property
device
-
dataset
: torch.utils.data.dataset.Dataset[T_co]
-
sampler
: Union[torch.utils.data.sampler.Sampler, Iterable]
-
property
-
class
transformers4rec.torch.utils.data_utils.
MerlinDataLoader
(paths_or_dataset, batch_size, max_sequence_length, conts=None, cats=None, labels=None, collate_fn=<function MerlinDataLoader.<lambda>>, engine=None, buffer_size=0.1, reader_kwargs=None, shuffle=False, seed_fn=None, parts_per_chunk=1, device=None, global_size=None, global_rank=None, sparse_names=None, sparse_max=None, sparse_as_dense=True, drop_last=False, schema=None, row_groups_per_part=True, **kwargs)[source] Bases:
Generic
[torch.utils.data.dataloader.T_co
]This class extends the [Merlin data loader] (https://github.com/NVIDIA-Merlin/dataloader/blob/main/merlin/dataloader/torch.py). The data input requires a merlin.io.Dataset or a path to the data files. It also sets the dataset’s schema with the necessary properties to prepare the input list features as dense tensors (i.e. padded to the specified max_sequence_length). The dense representation is required by the Transformers4Rec input modules.
- Parameters
paths_or_dataset (Union[str, merlin.io.Dataset]) – The dataset to load.
batch_size (int) – The size of each batch to supply to the model.
max_sequence_length (int) – The maximum sequence length to use for padding list columns. By default, 0 is used as the padding index.
cats (List[str], optional) – The list of categorical columns in the dataset. By default None.
conts (List[str], optional) – The list of continuous columns in the dataset. By default None.
labels (List[str], optional) – The list of label columns in the dataset. By default None.
shuffle (bool, optional) – Enable/disable shuffling of dataset. By default False.
parts_per_chunk (int) – The number of partitions from the iterator, an Merlin Dataset, to concatenate into a “chunk”. By default 1.
device (int, optional) – The device id of the selected GPU By default None.
sparse_names ([str], optional) – List with column names of columns that should be represented as sparse tensors. By default None.
sparse_max (Dict[str, int], optional) – A dictionary of key: column_name + value: integer representing the max sequence length for a list column. By default None.
sparse_as_dense (bool, optional) – Boolean value to activate transforming sparse tensors to dense ones. By default None.
drop_last (bool, optional) – Whether or not to drop the last batch in an epoch. This is useful when you need to guarantee that each batch contains exactly batch_size rows - since the last batch will usually contain fewer rows.
seed_fn (callable) – Function used to initialize random state
parts_per_chunk – Number of dataset partitions with size dictated by buffer_size to load and concatenate asynchronously. More partitions leads to better epoch-level randomness but can negatively impact throughput
global_size (int, optional) – When doing distributed training, this indicates the number of total processes that are training the model.
global_rank (int, optional) – When doing distributed training, this indicates the local rank for the current process.
schema (Schema, optional) – The Schema with the input features.
reader_kwargs – Extra arguments to pass to the merlin.io.Dataset object, when the path to data files is provided in paths_or_dataset argument.
row_groups_per_part (bool, optional) – If true, preserve the group partitions when loading the dataset from parquet files.
collate_fn (Callable, optional) – A processing function to collect and prepare the list samples (tuple of (input, target) Tensor(s)) returned by the Merlin DataLoader.
-
dataset
: torch.utils.data.dataset.Dataset[T_co]
-
classmethod
from_schema
(schema: merlin_standard_lib.schema.schema.Schema, paths_or_dataset, batch_size, max_sequence_length, continuous_features=None, categorical_features=None, targets=None, collate_fn=<function MerlinDataLoader.<lambda>>, shuffle=True, buffer_size=0.06, parts_per_chunk=1, sparse_names=None, sparse_max=None, **kwargs)[source] Instantitates MerlinDataLoader from a
DatasetSchema
.
-
sampler
: Union[torch.utils.data.sampler.Sampler, Iterable]
-
class
transformers4rec.torch.utils.data_utils.
ParquetDataset
(parquet_file, cols_to_read, target_names, seq_features_len_pad_trim)[source] Bases:
Generic
[torch.utils.data.dataset.T_co
]
-
class
transformers4rec.torch.utils.data_utils.
ShuffleDataset
(dataset, buffer_size)[source] Bases:
torch.utils.data.dataset.Dataset
[torch.utils.data.dataset.T_co
],Iterable
[torch.utils.data.dataset.T_co
]
transformers4rec.torch.utils.examples_utils module
-
transformers4rec.torch.utils.examples_utils.
list_files
(startpath)[source] Util function to print the nested structure of a directory
-
transformers4rec.torch.utils.examples_utils.
visualize_response
(batch, response, top_k, session_col='session_id')[source] Util function to extract top-k encoded item-ids from logits
- Parameters
batch (cudf.DataFrame) – the batch of raw data sent to triton server.
response (tritonclient.grpc.InferResult) – the response returned by grpc client.
top_k (int) – the top_k top items to retrieve from predictions.
-
transformers4rec.torch.utils.examples_utils.
fit_and_evaluate
(trainer, start_time_index, end_time_index, input_dir)[source] Util function for time-window based fine-tuning using the T4rec Trainer class. Iteratively train using data of a given index and evaluate on the validation data of the following index.
- Parameters
start_time_index (int) – The start index for training, it should match the partitions of the data directory
end_time_index (int) – The end index for training, it should match the partitions of the data directory
input_dir (str) – The input directory where the parquet files were saved based on partition column
- Returns
indexed_by_time_metrics – The dictionary of ranking metrics: each item is the list of scores over time indices.
- Return type
transformers4rec.torch.utils.schema_utils module
-
transformers4rec.torch.utils.schema_utils.
random_data_from_schema
(schema: merlin_standard_lib.schema.schema.Schema, num_rows: int, max_session_length: Optional[int] = None, min_session_length: int = 5, device=None, ragged=False, seed=0) → Dict[str, torch.Tensor][source]
transformers4rec.torch.utils.torch_utils module
-
class
transformers4rec.torch.utils.torch_utils.
LossMixin
[source] Bases:
object
Mixin to use for a torch.Module that can calculate a loss.
-
compute_loss
(inputs: Union[torch.Tensor, Dict[str, torch.Tensor]], targets: Union[torch.Tensor, Dict[str, torch.Tensor]], compute_metrics: bool = True, **kwargs) → torch.Tensor[source] Compute the loss on a batch of data.
- Parameters
inputs (Union[torch.Tensor, TabularData]) – TODO
targets (Union[torch.Tensor, TabularData]) – TODO
compute_metrics (bool, default=True) – Boolean indicating whether or not to update the state of the metrics (if they are defined).
-
-
class
transformers4rec.torch.utils.torch_utils.
MetricsMixin
[source] Bases:
object
Mixin to use for a torch.Module that can calculate metrics.
-
calculate_metrics
(inputs: Union[torch.Tensor, Dict[str, torch.Tensor]], targets: Union[torch.Tensor, Dict[str, torch.Tensor]]) → Dict[str, torch.Tensor][source] Calculate metrics on a batch of data, each metric is stateful and this updates the state.
The state of each metric can be retrieved by calling the compute_metrics method.
- Parameters
inputs (Union[torch.Tensor, TabularData]) – Tensor or dictionary of predictions returned by the T4Rec model
targets (Union[torch.Tensor, TabularData]) – Tensor or dictionary of true labels returned by the T4Rec model
-
compute_metrics
(mode: Optional[str] = None) → Dict[str, Union[float, torch.Tensor]][source] Returns the current state of each metric.
The state is typically updated each batch by calling the calculate_metrics method.
- Parameters
mode (str, default="val") –
- Returns
- Return type
Dict[str, Union[float, torch.Tensor]]
-
-
transformers4rec.torch.utils.torch_utils.
get_output_sizes_from_schema
(schema: merlin_standard_lib.schema.schema.Schema, batch_size=- 1, max_sequence_length=None)[source]
-
transformers4rec.torch.utils.torch_utils.
nested_detach
(tensors)[source] Detach tensors (even if it’s a nested list/tuple/dict of tensors). #TODO this method was copied from the latest version of HF transformers library to support dict outputs. So we should remove it when T4Rec is updated to use the latest version
-
transformers4rec.torch.utils.torch_utils.
nested_concat
(tensors, new_tensors, padding_index=- 100)[source] Concat the new_tensors to tensors on the first dim and pad them on the second if needed. Works for tensors or nested list/tuples/dict of tensors. #TODO this method was copied from the latest version of HF transformers library to support dict outputs. So we should remove it when T4Rec is updated to use the latest version
-
transformers4rec.torch.utils.torch_utils.
torch_pad_and_concatenate
(tensor1, tensor2, padding_index=- 100)[source] Concatenates tensor1 and tensor2 on first axis, applying padding on the second as needed
#TODO this method was copied from the latest version of HF transformers library to support dict outputs. So we should remove it when T4Rec is updated to use the latest version
-
transformers4rec.torch.utils.torch_utils.
atleast_1d
(tensor_or_array: Union[torch.Tensor, numpy.ndarray])[source]
-
transformers4rec.torch.utils.torch_utils.
nested_numpify
(tensors)[source] Numpify tensors (even if it’s a nested list/tuple/dict of tensors). #TODO this method was copied from the latest version of HF transformers library to support dict outputs. So we should remove it when T4Rec is updated to use the latest version
-
transformers4rec.torch.utils.torch_utils.
nested_truncate
(tensors, limit)[source] Truncate tensors at limit (even if it’s a nested list/tuple/dict of tensors). #TODO this method was copied from the latest version of HF transformers library to support dict outputs. So we should remove it when T4Rec is updated to use the latest version
-
transformers4rec.torch.utils.torch_utils.
numpy_pad_and_concatenate
(array1, array2, padding_index=- 100)[source] Concatenates array1 and array2 on first axis, applying padding on the second if necessary. #TODO this method was copied from the latest version of HF transformers library to support dict outputs. So we should remove it when T4Rec is updated to use the latest version
-
transformers4rec.torch.utils.torch_utils.
one_hot_1d
(labels: torch.Tensor, num_classes: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = torch.float32) → torch.Tensor[source] Coverts a 1d label tensor to one-hot representation
- Parameters
labels (torch.Tensor) – tensor with labels of shape \((N, H, W)\), where N is batch size. Each value is an integer representing correct classification.
num_classes (int) – number of classes in labels.
device (Optional[torch.device]) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_tensor_type()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
dtype (Optional[torch.dtype]) – the desired data type of returned tensor. Default: torch.float32
- Returns
the labels in one hot tensor.
- Return type
- Examples::
>>> labels = torch.LongTensor([0, 1, 2, 0]) >>> one_hot_1d(labels, num_classes=3) tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.], [1., 0., 0.], ])
-
class
transformers4rec.torch.utils.torch_utils.
MappingTransformerMasking
[source] Bases:
object
-
class
CausalLanguageModeling
(hidden_size: int, padding_idx: int = 0, eval_on_last_item_seq_only: bool = True, train_on_last_item_seq_only: bool = False, **kwargs) Bases:
transformers4rec.torch.masking.MaskSequence
In Causal Language Modeling (clm) you predict the next item based on past positions of the sequence. Future positions are masked.
- Parameters
hidden_size (int) – The hidden dimension of input tensors, needed to initialize trainable vector of masked positions.
padding_idx (int, default = 0) – Index of padding item used for getting batch of sequences with the same length
eval_on_last_item_seq_only (bool, default = True) – Predict only last item during evaluation
train_on_last_item_seq_only (predict only last item during training) –
-
apply_mask_to_inputs
(inputs: torch.Tensor, mask_schema: torch.Tensor, training: bool = False, testing: bool = False) → torch.Tensor
-
class
MaskedLanguageModeling
(hidden_size: int, padding_idx: int = 0, eval_on_last_item_seq_only: bool = True, mlm_probability: float = 0.15, **kwargs) Bases:
transformers4rec.torch.masking.MaskSequence
In Masked Language Modeling (mlm) you randomly select some positions of the sequence to be predicted, which are masked. During training, the Transformer layer is allowed to use positions on the right (future info). During inference, all past items are visible for the Transformer layer, which tries to predict the next item.
- Parameters
hidden_size (int) – The hidden dimension of input tensors, needed to initialize trainable vector of masked positions.
padding_idx (int, default = 0) – Index of padding item used for getting batch of sequences with the same length
eval_on_last_item_seq_only (bool, default = True) – Predict only last item during evaluation
mlm_probability (Optional[float], default = 0.15) – Probability of an item to be selected (masked) as a label of the given sequence. p.s. We enforce that at least one item is masked for each sequence, so that the network can learn something with it.
-
apply_mask_to_inputs
(inputs: torch.Tensor, mask_schema: torch.Tensor, training=False, testing=False) → torch.Tensor Control the masked positions in the inputs by replacing the true interaction by a learnable masked embedding.
- inputs: torch.Tensor
The 3-D tensor of interaction embeddings resulting from the ops: TabularFeatures + aggregation + projection(optional)
- schema: MaskingSchema
The boolean mask indicating masked positions.
- training: bool
Flag to indicate whether we are in Training mode or not. During training, the labels can be any items within the sequence based on the selected masking task.
- testing: bool
Flag to indicate whether we are in Evaluation (=True) or Inference (=False) mode. During evaluation, we are predicting all next items or last item only in the sequence based on the param eval_on_last_item_seq_only. During inference, we don’t mask the input sequence and use all available information to predict the next item.
-
class
PermutationLanguageModeling
(hidden_size: int, padding_idx: int = 0, eval_on_last_item_seq_only: bool = True, plm_probability: float = 0.16666666666666666, max_span_length: int = 5, permute_all: bool = False, **kwargs) Bases:
transformers4rec.torch.masking.MaskSequence
In Permutation Language Modeling (plm) you use a permutation factorization at the level of the self-attention layer to define the accessible bidirectional context.
- Parameters
hidden_size (int) – The hidden dimension of input tensors, needed to initialize trainable vector of masked positions.
padding_idx (int, default = 0) – Index of padding item used for getting batch of sequences with the same length
eval_on_last_item_seq_only (bool, default = True) – Predict only last item during evaluation
max_span_length (int) – maximum length of a span of masked items
plm_probability (float) – The ratio of surrounding items to unmask to define the context of the span-based prediction segment of items
permute_all (bool) – Compute partial span-based prediction (=False) or not.
-
compute_masked_targets
(item_ids: torch.Tensor, training=False, **kwargs) → transformers4rec.torch.masking.MaskingInfo
-
class
ReplacementLanguageModeling
(hidden_size: int, padding_idx: int = 0, eval_on_last_item_seq_only: bool = True, sample_from_batch: bool = False, **kwargs) Bases:
transformers4rec.torch.masking.MaskedLanguageModeling
Replacement Language Modeling (rtd) you use MLM to randomly select some items, but replace them by random tokens. Then, a discriminator model (that can share the weights with the generator or not), is asked to classify whether the item at each position belongs or not to the original sequence. The generator-discriminator architecture was jointly trained using Masked LM and RTD tasks.
- Parameters
hidden_size (int) – The hidden dimension of input tensors, needed to initialize trainable vector of masked positions.
padding_idx (int, default = 0) – Index of padding item used for getting batch of sequences with the same length
eval_on_last_item_seq_only (bool, default = True) – Predict only last item during evaluation
sample_from_batch (bool) – Whether to sample replacement item ids from the same batch or not
-
get_fake_tokens
(itemid_seq, target_flat, logits) Second task of RTD is binary classification to train the discriminator. The task consists of generating fake data by replacing [MASK] positions with random items, ELECTRA discriminator learns to detect fake replacements.
- Parameters
itemid_seq (torch.Tensor of shape (bs, max_seq_len)) – input sequence of item ids
target_flat (torch.Tensor of shape (bs*max_seq_len)) – flattened masked label sequences
logits (torch.Tensor of shape (#pos_item, vocab_size or #pos_item),) – mlm probabilities of positive items computed by the generator model. The logits are over the whole corpus if sample_from_batch = False, over the positive items (masked) of the current batch otherwise
- Returns
corrupted_inputs (torch.Tensor of shape (bs, max_seq_len)) – input sequence of item ids with fake replacement
discriminator_labels (torch.Tensor of shape (bs, max_seq_len)) – binary labels to distinguish between original and replaced items
batch_updates (torch.Tensor of shape (#pos_item)) – the indices of replacement item within the current batch if sample_from_batch is enabled
-
sample_from_softmax
(logits: torch.Tensor) → torch.Tensor Sampling method for replacement token modeling (ELECTRA)
- Parameters
logits (torch.Tensor(pos_item, vocab_size)) – scores of probability of masked positions returned by the generator model
- Returns
samples – ids of replacements items.
- Return type
torch.Tensor(#pos_item)
-
DEFAULT_MASKING
= [<class 'transformers4rec.torch.masking.CausalLanguageModeling'>, <class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>, <class 'transformers4rec.torch.masking.PermutationLanguageModeling'>]
-
BertConfig
= [<class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
ConvBertConfig
= [<class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
DebertaConfig
= [<class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
DistilBertConfig
= [<class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
GPT2Config
= [<class 'transformers4rec.torch.masking.CausalLanguageModeling'>]
-
LongformerConfig
= [<class 'transformers4rec.torch.masking.CausalLanguageModeling'>, <class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
MegatronBertConfig
= [<class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
MPNetConfig
= [<class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
RobertaConfig
= [<class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
RoFormerConfig
= [<class 'transformers4rec.torch.masking.CausalLanguageModeling'>, <class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>]
-
TransfoXLConfig
= [<class 'transformers4rec.torch.masking.CausalLanguageModeling'>]
-
XLNetConfig
= [<class 'transformers4rec.torch.masking.CausalLanguageModeling'>, <class 'transformers4rec.torch.masking.MaskedLanguageModeling'>, <class 'transformers4rec.torch.masking.ReplacementLanguageModeling'>, <class 'transformers4rec.torch.masking.PermutationLanguageModeling'>]
-
class