Source code for merlin.dag.graph

#
# Copyright (c) 2022, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import logging
from collections import deque
from typing import Dict, Optional

from merlin.dag.node import (
    Node,
    _combine_schemas,
    iter_nodes,
    postorder_iter_nodes,
    preorder_iter_nodes,
)
from merlin.schema import Schema

LOG = logging.getLogger("merlin")


[docs] class Graph: """ Represents an DAG composed of Nodes, each of which contains an operator that transforms dataframes or dataframe-like data """ def __init__(self, output_node: Node, subgraphs: Optional[Dict[str, Node]] = None): self.output_node = output_node self.subgraphs = subgraphs or {} parents_with_deps = self.output_node.parents_with_dependencies parents_with_deps.append(output_node) for name, sg in self.subgraphs.items(): if sg not in parents_with_deps: raise ValueError( f"The output node of subgraph {name} does not exist in the provided graph." )
[docs] def subgraph(self, name: str) -> "Graph": if name not in self.subgraphs.keys(): raise ValueError(f"No subgraph named {name}. Options are: {self.subgraphs.keys()}") return Graph(self.subgraphs[name])
@property def input_dtypes(self): if self.input_schema: return { name: col_schema.dtype for name, col_schema in self.input_schema.column_schemas.items() } else: return {} @property def output_dtypes(self): if self.output_schema: return { name: col_schema.dtype for name, col_schema in self.output_schema.column_schemas.items() } else: return {} @property def column_mapping(self): nodes = preorder_iter_nodes(self.output_node) column_mapping = self.output_node.column_mapping for node in list(nodes)[1:]: node_map = node.column_mapping for output_col, input_cols in column_mapping.items(): early_inputs = [] for input_col in input_cols: early_inputs += node_map.get(input_col, [input_col]) column_mapping[output_col] = early_inputs return column_mapping
[docs] def construct_schema(self, root_schema: Schema, preserve_dtypes=False) -> "Graph": """ Given the schema of a dataset to transform, determine the output schema of the graph Parameters ---------- root_schema : Schema The schema of a dataset to be transformed with this DAG preserve_dtypes : bool, optional Whether to keep any dtypes that may already be present in the schemas, by default False Returns ------- Graph This DAG after the schemas have been filled in """ nodes = list(postorder_iter_nodes(self.output_node)) self._compute_node_schemas(root_schema, nodes, preserve_dtypes) self._validate_node_schemas(root_schema, nodes, preserve_dtypes) return self
def _compute_node_schemas(self, root_schema, nodes, preserve_dtypes=False): for node in nodes: node.compute_schemas(root_schema, preserve_dtypes=preserve_dtypes) def _validate_node_schemas(self, root_schema, nodes, strict_dtypes=False): for node in nodes: node.validate_schemas(root_schema, strict_dtypes=strict_dtypes) @property def input_schema(self): # leaf_node input and output schemas are the same (aka selection) return _combine_schemas(self.leaf_nodes) @property def leaf_nodes(self): return [node for node in postorder_iter_nodes(self.output_node) if not node.parents] @property def output_schema(self): return self.output_node.output_schema def _input_columns(self): input_cols = [] for node in iter_nodes([self.output_node]): upstream_output_cols = [] for upstream_node in node.parents_with_dependencies: upstream_output_cols += upstream_node.output_columns.names upstream_output_cols = _get_unique(upstream_output_cols) input_cols += list(set(node.input_columns.names) - set(upstream_output_cols)) return _get_unique(input_cols)
[docs] def remove_inputs(self, to_remove): """ Removes columns from a Graph Starting at the leaf nodes, trickle down looking for columns to remove, when found remove but then must propagate the removal of any other output columns derived from that column. Parameters ----------- graph : Graph The graph to remove columns from to_remove : array_like A list of input column names to remove from the graph Returns ------- Graph The same graph with columns removed """ nodes_to_process = deque([(node, to_remove) for node in self.leaf_nodes]) while nodes_to_process: node, columns_to_remove = nodes_to_process.popleft() if node.input_schema and len(node.input_schema): output_columns_to_remove = node.remove_inputs(columns_to_remove) for child in node.children: nodes_to_process.append( (child, list(set(to_remove + output_columns_to_remove))) ) if not len(node.input_schema): node.remove_child(child) # remove any dependencies that do not have an output schema node.dependencies = [ dep for dep in node.dependencies if dep.output_schema and len(dep.output_schema) ] if not node.input_schema or not len(node.input_schema): for parent in node.parents: parent.remove_child(node) for dependency in node.dependencies: dependency.remove_child(node) del node return self
[docs] @classmethod def get_nodes_by_op_type(cls, nodes, op_type): return set(node for node in iter_nodes(nodes) if isinstance(node.op, op_type))
def _get_schemaless_nodes(nodes): schemaless_nodes = [] for node in iter_nodes(nodes): if node.input_schema is None: schemaless_nodes.append(node) return set(schemaless_nodes) def _get_unique(cols): # Need to preserve order in unique-column list return list({x: x for x in cols}.keys())