merlin.models.tf.EmbeddingFeatures#
- class merlin.models.tf.EmbeddingFeatures(*args, **kwargs)[source]#
- Bases: - merlin.models.tf.core.tabular.TabularBlock- Input block for embedding-lookups for categorical features. - For multi-hot features, the embeddings will be aggregated into a single tensor using the mean. - Parameters
 - pre: Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional
- Transformations to apply on the inputs when the module is called (so before call). 
- post: Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional
- Transformations to apply on the inputs after the module is called (so after call). 
- aggregation: Union[str, TabularAggregation], optional
- Aggregation to apply after processing the call-method to output a single Tensor. - Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”. 
- schema: Optional[DatasetSchema]
- DatasetSchema containing the columns used in this block. 
- name: Optional[str]
- Name of the layer. 
 - __init__(feature_config: Dict[str, tensorflow.python.tpu.tpu_embedding_v2_utils.FeatureConfig], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, schema: Optional[merlin.schema.schema.Schema] = None, name=None, add_default_pre=True, l2_reg: Optional[float] = 0.0, **kwargs)[source]#
 - Methods - __init__(feature_config[, pre, post, ...])- add_loss(losses, **kwargs)- Add loss tensor(s), potentially dependent on layer inputs. - add_metric(value[, name])- Adds metric tensor to the layer. - add_update(updates)- Add update op(s), potentially dependent on layer inputs. - add_variable(*args, **kwargs)- Deprecated, do NOT use! Alias for add_weight. - add_weight([name, shape, dtype, ...])- Adds a new variable to the layer. - apply_to_all(inputs[, columns_to_filter])- as_tabular([name])- build(input_shapes)- build_from_config(config)- calculate_batch_size_from_input_shapes(...)- call(inputs, **kwargs)- call_outputs(outputs[, training])- check_schema([schema])- compute_call_output_shape(input_shapes)- compute_mask(inputs[, mask])- Computes an output mask tensor. - compute_output_shape(input_shapes)- compute_output_signature(input_signature)- Compute the output tensor signature of the layer based on the inputs. - connect(*block[, block_name, context])- Connect the block to other blocks sequentially. - connect_branch(*branches[, add_rest, post, ...])- Connect the block to one or multiple branches. - connect_debug_block([append])- Connect the block to a debug block. - connect_with_residual(block[, activation])- Connect the block to other blocks sequentially with a residual connection. - connect_with_shortcut(block[, ...])- Connect the block to other blocks sequentially with a shortcut connection. - copy()- count_params()- Count the total number of scalars composing the weights. - embedding_table_dataset(table_name[, ...])- Creates a Dataset for the embedding table - embedding_table_df(table_name[, ...])- Retrieves a dataframe with the embedding table - export_embedding_table(table_name, export_path)- Exports the embedding table to parquet file - finalize_state()- Finalizes the layers state after updating layer weights. - from_config(config)- from_features(features[, pre, post, ...])- Initializes a TabularLayer instance where the contents of features will be filtered out - from_layer(layer)- from_schema(schema[, embedding_options, ...])- Instantiates embedding features from the schema - get_build_config()- get_embedding_table(table_name[, ...])- get_input_at(node_index)- Retrieves the input tensor(s) of a layer at a given node. - get_input_mask_at(node_index)- Retrieves the input mask tensor(s) of a layer at a given node. - get_input_shape_at(node_index)- Retrieves the input shape(s) of a layer at a given node. - get_item_ids_from_inputs(inputs)- get_output_at(node_index)- Retrieves the output tensor(s) of a layer at a given node. - get_output_mask_at(node_index)- Retrieves the output mask tensor(s) of a layer at a given node. - get_output_shape_at(node_index)- Retrieves the output shape(s) of a layer at a given node. - get_padding_mask_from_item_id(inputs[, ...])- get_weights()- Returns the current weights of the layer, as NumPy arrays. - lookup_feature(name, val[, output_sequence])- parse(*block)- parse_block(input)- post_call(inputs[, transformations, ...])- Method that's typically called after the forward method for post-processing. - pre_call(inputs[, transformations])- Method that's typically called before the forward method for pre-processing. - prepare([block, post, aggregation])- Transform the inputs of this block. - register_features(feature_shapes)- repeat([num])- Repeat the block num times. - repeat_in_parallel([num, prefix, names, ...])- Repeat the block num times in parallel. - repr_add()- repr_extra()- repr_ignore()- select_by_name(name)- select_by_tag(tags)- set_aggregation(value)- param value
 - set_post(value)- set_pre(value)- set_schema([schema])- set_weights(weights)- Sets the weights of the layer, from NumPy arrays. - super()- table_config(feature_name)- with_name_scope(method)- Decorator to automatically enter the module name scope. - Attributes - REQUIRES_SCHEMA- activity_regularizer- Optional regularizer function for the output of this layer. - aggregation- rtype: TabularAggregation, optional - compute_dtype- The dtype of the layer's computations. - context- dtype- The dtype of the layer weights. - dtype_policy- The dtype policy associated with this layer. - dynamic- Whether the layer is dynamic (eager-only); set in the constructor. - has_schema- inbound_nodes- Return Functional API nodes upstream of this layer. - input- Retrieves the input tensor(s) of a layer. - input_mask- Retrieves the input mask tensor(s) of a layer. - input_shape- Retrieves the input shape(s) of a layer. - input_spec- InputSpec instance(s) describing the input format for this layer. - is_input- is_tabular- losses- List of losses added using the add_loss() API. - metrics- List of metrics added using the add_metric() API. - name- Name of the layer (string), set in the constructor. - name_scope- Returns a tf.name_scope instance for this class. - non_trainable_variables- non_trainable_weights- List of all non-trainable weights tracked by this layer. - outbound_nodes- Return Functional API nodes downstream of this layer. - output- Retrieves the output tensor(s) of a layer. - output_mask- Retrieves the output mask tensor(s) of a layer. - output_shape- Retrieves the output shape(s) of a layer. - post- rtype: SequentialTabularTransformations, optional - pre- rtype: SequentialTabularTransformations, optional - registry- schema- stateful- submodules- Sequence of all sub-modules. - supports_masking- Whether this layer supports computing a mask using compute_mask. - trainable- trainable_variables- trainable_weights- List of all trainable weights tracked by this layer. - updates- variable_dtype- Alias of Layer.dtype, the dtype of the weights. - variables- Returns the list of all layer variables/weights. - weights- Returns the list of all layer variables/weights. - classmethod from_schema(schema: merlin.schema.schema.Schema, embedding_options: merlin.models.tf.inputs.embedding.EmbeddingOptions = EmbeddingOptions(embedding_dims=None, embedding_dim_default=64, infer_embedding_sizes=False, infer_embedding_sizes_multiplier=2.0, infer_embeddings_ensure_dim_multiple_of_8=False, embeddings_initializers=None, embeddings_l2_reg=0.0, combiner='mean'), tags: Optional[Union[merlin.schema.tags.TagSet, List[str], List[merlin.schema.tags.Tags], List[Union[str, merlin.schema.tags.Tags]]]] = None, max_sequence_length: Optional[int] = None, **kwargs) Optional[merlin.models.tf.inputs.embedding.EmbeddingFeatures][source]#
- Instantiates embedding features from the schema - Parameters
- schema (Schema) – The features chema 
- embedding_options (EmbeddingOptions, optional) – An EmbeddingOptions instance, which allows for a number of options for the embedding table, by default EmbeddingOptions() 
- tags (Optional[TagsType], optional) – If provided, keeps only features from those tags, by default None 
- max_sequence_length (Optional[int], optional) – Maximum sequence length of sparse features (if any), by default None 
 
- Returns
- An instance of EmbeddingFeatures block, with the embedding layers created under-the-hood 
- Return type
 
 - call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], **kwargs) Dict[str, tensorflow.python.framework.ops.Tensor][source]#
 - get_embedding_table(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False)[source]#
 - embedding_table_df(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False, gpu: bool = True)[source]#
- Retrieves a dataframe with the embedding table - Parameters
- table_name (Union[str, Tags]) – Tag or name of the embedding table 
- l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False 
- gpu (bool, optional) – Whether or not should use GPU, by default True 
 
- Returns
- Returns a dataframe (cudf or pandas), depending on the gpu 
- Return type
- Union[pd.DataFrame, cudf.DataFrame] 
 
 - embedding_table_dataset(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False, gpu=True) merlin.io.dataset.Dataset[source]#
- Creates a Dataset for the embedding table - Parameters
- table_name (Union[str, Tags]) – Tag or name of the embedding table 
- l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False 
- gpu (bool, optional) – Whether or not should use GPU, by default True 
 
- Returns
- Returns a Dataset with the embeddings 
- Return type
 
 - export_embedding_table(table_name: Union[str, merlin.schema.tags.Tags], export_path: str, l2_normalization: bool = False, gpu=True)[source]#
- Exports the embedding table to parquet file - Parameters
- table_name (Union[str, Tags]) – Tag or name of the embedding table 
- export_path (str) – Path for the generated parquet file 
- l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False 
- gpu (bool, optional) – Whether or not should use GPU, by default True