merlin.models.tf.CausalLanguageModeling
-
class
merlin.models.tf.
CausalLanguageModeling
(*args, **kwargs)[source] Bases:
merlin.models.tf.blocks.core.masking.MaskingBlock
In Causal Language Modeling (clm) you predict the next item based on past positions of the sequence. Future positions are masked. :param padding_idx: Index of padding item, used for masking and for getting batch of sequences
with the same length. Defaults to 0
- Parameters
eval_on_last_item_seq_only (bool) – When set to True, predict only the last non-padded item during evaluation Defaults to True
item_id_feature_name (str) – Name of the column containing the item ids Defaults to item_id
train_on_last_item_seq_only (Optional[bool]) – predict only the last item during training. Defaults to True.
-
__init__
(padding_idx: int = 0, eval_on_last_item_seq_only: bool = True, train_on_last_item_seq_only: bool = True, **kwargs)[source]
Methods
__init__
([padding_idx, …])add_features_to_context
(feature_shapes)add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, …])Adds a new variable to the layer.
apply_mask_to_inputs
(inputs, mask_schema)as_tabular
([name])build
(input_shapes)call
(inputs[, training])call_outputs
(outputs[, training])check_schema
([schema])compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_mask_schema
(items[, training])compute_output_shape
(input_shape)Computes the output shape of the layer.
compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect
(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch
(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block
([append])Connect the block to a debug block.
connect_with_residual
(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut
(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy
()count_params
()Count the total number of scalars composing the weights.
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config)Creates a layer from its config.
from_layer
(layer)get_config
()get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs
(inputs)get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id
(inputs[, …])get_weights
()Returns the current weights of the layer, as NumPy arrays.
parse
(*block)parse_block
(input)prepare
([block, post, aggregation])Transform the inputs of this block.
register_features
(feature_shapes)repeat
([num])Repeat the block num times.
repeat_in_parallel
([num, prefix, names, …])Repeat the block num times in parallel.
select_by_name
(name)set_schema
([schema])set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
to_model
(schema[, input_block, prediction_tasks])Wrap the block between inputs & outputs to create a model.
with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMA
activity_regularizer
Optional regularizer function for the output of this layer.
compute_dtype
The dtype of the layer’s computations.
context
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
has_schema
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
registry
schema
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.