merlin.models.tf.SequentialBlock
-
class
merlin.models.tf.
SequentialBlock
(*args, **kwargs)[source] Bases:
merlin.models.tf.blocks.core.base.Block
The SequentialLayer represents a sequence of Keras layers. It is a Keras Layer that can be used instead of tf.keras.layers.Sequential, which is actually a Keras Model. In contrast to keras Sequential, this layer can be used as a pure Layer in tf.functions and when exporting SavedModels, without having to pre-declare input and output shapes. In turn, this layer is usable as a preprocessing layer for TF Agents Networks, and can be exported via PolicySaver. Usage:
c = SequentialLayer([layer1, layer2, layer3]) output = c(inputs) # Equivalent to: output = layer3(layer2(layer1(inputs)))
-
__init__
(*layers, filter: Optional[Union[merlin.schema.schema.Schema, merlin.schema.tags.Tags, List[str], merlin.models.tf.blocks.core.tabular.Filter]] = None, pre_aggregation: Optional[Union[str, merlin.models.tf.blocks.core.tabular.TabularAggregation]] = None, block_name: Optional[str] = None, copy_layers: bool = False, **kwargs)[source] Create a composition.
- Parameters
layers – A list or tuple of layers to compose.
**kwargs – Arguments to pass to Keras layer initializer, including name.
- Raises
TypeError: – If any of the layers are not instances of keras Layer.
Methods
__init__
(*layers[, filter, pre_aggregation, …])Create a composition.
add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, …])Adds a new variable to the layer.
as_tabular
([name])build
([input_shape])call
(inputs[, training])call_outputs
(outputs[, training])check_schema
([schema])compute_loss
(inputs, targets, **kwargs)compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shape)compute_output_signature
(input_signature)connect
(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch
(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block
([append])Connect the block to a debug block.
connect_with_residual
(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut
(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy
()count_params
()Count the total number of scalars composing the weights.
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config[, custom_objects])from_layer
(layer)get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs
(inputs)get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id
(inputs[, …])get_weights
()Returns the current weights of the layer, as NumPy arrays.
parse
(*block)parse_block
(input)prepare
([block, post, aggregation])Transform the inputs of this block.
register_features
(feature_shapes)repeat
([num])Repeat the block num times.
repeat_in_parallel
([num, prefix, names, …])Repeat the block num times in parallel.
select_by_name
(name)set_schema
([schema])set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
to_model
(schema[, input_block, prediction_tasks])Wrap the block between inputs & outputs to create a model.
with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMA
activity_regularizer
Optional regularizer function for the output of this layer.
compute_dtype
The dtype of the layer’s computations.
context
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
has_schema
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
registry
schema
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable_variables
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
-
property
inputs
-
property
first
-
property
last
-
property
filter_features
-
property
trainable_weights
-
property
non_trainable_weights
-
property
trainable
-
property
losses
-
property
regularizers
-
call_outputs
(outputs: merlin.models.tf.blocks.core.base.PredictionOutput, training=False, **kwargs) → merlin.models.tf.blocks.core.base.PredictionOutput[source]
-
property
is_tabular
-