merlin.models.tf.SequentialBlock
-
class
merlin.models.tf.SequentialBlock(*args, **kwargs)[source] Bases:
merlin.models.tf.blocks.core.base.BlockThe SequentialLayer represents a sequence of Keras layers. It is a Keras Layer that can be used instead of tf.keras.layers.Sequential, which is actually a Keras Model. In contrast to keras Sequential, this layer can be used as a pure Layer in tf.functions and when exporting SavedModels, without having to pre-declare input and output shapes. In turn, this layer is usable as a preprocessing layer for TF Agents Networks, and can be exported via PolicySaver. Usage:
c = SequentialLayer([layer1, layer2, layer3]) output = c(inputs) # Equivalent to: output = layer3(layer2(layer1(inputs)))
-
__init__(*layers, filter: Optional[Union[merlin.schema.schema.Schema, merlin.schema.tags.Tags, List[str], merlin.models.tf.blocks.core.tabular.Filter]] = None, pre_aggregation: Optional[Union[str, merlin.models.tf.blocks.core.tabular.TabularAggregation]] = None, block_name: Optional[str] = None, copy_layers: bool = False, **kwargs)[source] Create a composition.
- Parameters
layers – A list or tuple of layers to compose.
**kwargs – Arguments to pass to Keras layer initializer, including name.
- Raises
TypeError: – If any of the layers are not instances of keras Layer.
Methods
__init__(*layers[, filter, pre_aggregation, …])Create a composition.
add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
as_tabular([name])build([input_shape])call(inputs[, training])call_outputs(outputs[, training])check_schema([schema])compute_loss(inputs, targets, **kwargs)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shape)compute_output_signature(input_signature)connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config[, custom_objects])from_layer(layer)get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
parse(*block)parse_block(input)prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
select_by_name(name)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
to_model(schema[, input_block, prediction_tasks])Wrap the block between inputs & outputs to create a model.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
has_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesoutbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainable_variablesupdatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
property
inputs
-
property
first
-
property
last
-
property
filter_features
-
property
trainable_weights
-
property
non_trainable_weights
-
property
trainable
-
property
losses
-
property
regularizers
-
call_outputs(outputs: merlin.models.tf.blocks.core.base.PredictionOutput, training=False, **kwargs) → merlin.models.tf.blocks.core.base.PredictionOutput[source]
-
property
is_tabular
-