merlin.models.tf.SequentialBlock

class merlin.models.tf.SequentialBlock(*args, **kwargs)[source]

Bases: merlin.models.tf.blocks.core.base.Block

The SequentialLayer represents a sequence of Keras layers. It is a Keras Layer that can be used instead of tf.keras.layers.Sequential, which is actually a Keras Model. In contrast to keras Sequential, this layer can be used as a pure Layer in tf.functions and when exporting SavedModels, without having to pre-declare input and output shapes. In turn, this layer is usable as a preprocessing layer for TF Agents Networks, and can be exported via PolicySaver. Usage:

c = SequentialLayer([layer1, layer2, layer3])
output = c(inputs)    # Equivalent to: output = layer3(layer2(layer1(inputs)))
__init__(*layers, filter: Optional[Union[merlin.schema.schema.Schema, merlin.schema.tags.Tags, List[str], merlin.models.tf.blocks.core.tabular.Filter]] = None, pre_aggregation: Optional[Union[str, merlin.models.tf.blocks.core.tabular.TabularAggregation]] = None, block_name: Optional[str] = None, copy_layers: bool = False, **kwargs)[source]

Create a composition.

Parameters
  • layers – A list or tuple of layers to compose.

  • **kwargs – Arguments to pass to Keras layer initializer, including name.

Raises

TypeError: – If any of the layers are not instances of keras Layer.

Methods

__init__(*layers[, filter, pre_aggregation, …])

Create a composition.

add_loss(losses, **kwargs)

Add loss tensor(s), potentially dependent on layer inputs.

add_metric(value[, name])

Adds metric tensor to the layer.

add_update(updates)

Add update op(s), potentially dependent on layer inputs.

add_variable(*args, **kwargs)

Deprecated, do NOT use! Alias for add_weight.

add_weight([name, shape, dtype, …])

Adds a new variable to the layer.

as_tabular([name])

build([input_shape])

call(inputs[, training])

call_outputs(outputs[, training])

check_schema([schema])

compute_loss(inputs, targets, **kwargs)

compute_mask(inputs[, mask])

Computes an output mask tensor.

compute_output_shape(input_shape)

compute_output_signature(input_signature)

connect(*block[, block_name, context])

Connect the block to other blocks sequentially.

connect_branch(*branches[, add_rest, post, …])

Connect the block to one or multiple branches.

connect_debug_block([append])

Connect the block to a debug block.

connect_with_residual(block[, activation])

Connect the block to other blocks sequentially with a residual connection.

connect_with_shortcut(block[, …])

Connect the block to other blocks sequentially with a shortcut connection.

copy()

count_params()

Count the total number of scalars composing the weights.

finalize_state()

Finalizes the layers state after updating layer weights.

from_config(config[, custom_objects])

from_layer(layer)

get_config()

get_input_at(node_index)

Retrieves the input tensor(s) of a layer at a given node.

get_input_mask_at(node_index)

Retrieves the input mask tensor(s) of a layer at a given node.

get_input_shape_at(node_index)

Retrieves the input shape(s) of a layer at a given node.

get_item_ids_from_inputs(inputs)

get_output_at(node_index)

Retrieves the output tensor(s) of a layer at a given node.

get_output_mask_at(node_index)

Retrieves the output mask tensor(s) of a layer at a given node.

get_output_shape_at(node_index)

Retrieves the output shape(s) of a layer at a given node.

get_padding_mask_from_item_id(inputs[, …])

get_weights()

Returns the current weights of the layer, as NumPy arrays.

parse(*block)

parse_block(input)

prepare([block, post, aggregation])

Transform the inputs of this block.

register_features(feature_shapes)

repeat([num])

Repeat the block num times.

repeat_in_parallel([num, prefix, names, …])

Repeat the block num times in parallel.

select_by_name(name)

set_schema([schema])

set_weights(weights)

Sets the weights of the layer, from NumPy arrays.

to_model(schema[, input_block, prediction_tasks])

Wrap the block between inputs & outputs to create a model.

with_name_scope(method)

Decorator to automatically enter the module name scope.

Attributes

REQUIRES_SCHEMA

activity_regularizer

Optional regularizer function for the output of this layer.

compute_dtype

The dtype of the layer’s computations.

context

dtype

The dtype of the layer weights.

dtype_policy

The dtype policy associated with this layer.

dynamic

Whether the layer is dynamic (eager-only); set in the constructor.

filter_features

first

has_schema

inbound_nodes

Return Functional API nodes upstream of this layer.

input

Retrieves the input tensor(s) of a layer.

input_mask

Retrieves the input mask tensor(s) of a layer.

input_shape

Retrieves the input shape(s) of a layer.

input_spec

InputSpec instance(s) describing the input format for this layer.

inputs

is_tabular

last

losses

metrics

List of metrics added using the add_metric() API.

name

Name of the layer (string), set in the constructor.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

non_trainable_weights

outbound_nodes

Return Functional API nodes downstream of this layer.

output

Retrieves the output tensor(s) of a layer.

output_mask

Retrieves the output mask tensor(s) of a layer.

output_shape

Retrieves the output shape(s) of a layer.

registry

regularizers

schema

stateful

submodules

Sequence of all sub-modules.

supports_masking

Whether this layer supports computing a mask using compute_mask.

trainable

trainable_variables

trainable_weights

updates

variable_dtype

Alias of Layer.dtype, the dtype of the weights.

variables

Returns the list of all layer variables/weights.

weights

Returns the list of all layer variables/weights.

compute_output_shape(input_shape)[source]
compute_output_signature(input_signature)[source]
build(input_shape=None)[source]
set_schema(schema=None)[source]
property inputs
property first
property last
property filter_features
property trainable_weights
property non_trainable_weights
property trainable
property losses
property regularizers
call(inputs, training=False, **kwargs)[source]
compute_loss(inputs, targets, **kwargs)[source]
call_outputs(outputs: merlin.models.tf.blocks.core.base.PredictionOutput, training=False, **kwargs)merlin.models.tf.blocks.core.base.PredictionOutput[source]
get_config()[source]
property is_tabular
classmethod from_config(config, custom_objects=None)[source]