merlin.models.tf.DLRMBlock
- 
merlin.models.tf.DLRMBlock(schema: merlin.schema.schema.Schema, embedding_dim: int, bottom_block: Optional[merlin.models.tf.blocks.core.base.Block] = None, top_block: Optional[merlin.models.tf.blocks.core.base.Block] = None) → merlin.models.tf.blocks.core.combinators.SequentialBlock[source]
- Builds the DLRM architecture, as proposed in the following `paper https://arxiv.org/pdf/1906.00091.pdf`_ 1. - References - 1
- Naumov, Maxim, et al. “Deep learning recommendation model for personalization and recommendation systems.” arXiv preprint arXiv:1906.00091 (2019). 
 - Parameters
- schema (Schema) – The Schema with the input features 
- bottom_block (Block) – The Block that combines the continuous features (typically a MLPBlock) 
- top_block (Optional[Block], optional) – The optional Block that combines the outputs of bottom layer and of the factorization machine layer, by default None 
- embedding_dim (Optional[int], optional) – Dimension of the embeddings, by default None 
 
- Returns
- The DLRM block 
- Return type
- Raises
- ValueError – The schema is required by DLRM 
- ValueError – The bottom_block is required by DLRM 
- ValueError – The embedding_dim (X) needs to match the last layer of bottom MLP (Y).