merlin.models.tf.DLRMBlock
-
merlin.models.tf.
DLRMBlock
(schema: merlin.schema.schema.Schema, embedding_dim: int, bottom_block: Optional[merlin.models.tf.blocks.core.base.Block] = None, top_block: Optional[merlin.models.tf.blocks.core.base.Block] = None) → merlin.models.tf.blocks.core.combinators.SequentialBlock[source] Builds the DLRM architecture, as proposed in the following `paper https://arxiv.org/pdf/1906.00091.pdf`_ 1.
References
- 1
Naumov, Maxim, et al. “Deep learning recommendation model for personalization and recommendation systems.” arXiv preprint arXiv:1906.00091 (2019).
- Parameters
schema (Schema) – The Schema with the input features
bottom_block (Block) – The Block that combines the continuous features (typically a MLPBlock)
top_block (Optional[Block], optional) – The optional Block that combines the outputs of bottom layer and of the factorization machine layer, by default None
embedding_dim (Optional[int], optional) – Dimension of the embeddings, by default None
- Returns
The DLRM block
- Return type
- Raises
ValueError – The schema is required by DLRM
ValueError – The bottom_block is required by DLRM
ValueError – The embedding_dim (X) needs to match the last layer of bottom MLP (Y).