merlin.models.tf.ItemSampler
- 
class merlin.models.tf.ItemSampler(*args, **kwargs)[source]
- Bases: - abc.ABC,- keras.engine.base_layer.Layer- Methods - __init__([max_num_samples])- add(embeddings, items_metadata[, training])- add_loss(losses, **kwargs)- Add loss tensor(s), potentially dependent on layer inputs. - add_metric(value[, name])- Adds metric tensor to the layer. - add_update(updates)- Add update op(s), potentially dependent on layer inputs. - add_variable(*args, **kwargs)- Deprecated, do NOT use! Alias for add_weight. - add_weight([name, shape, dtype, …])- Adds a new variable to the layer. - build(input_shape)- Creates the variables of the layer (optional, for subclass implementers). - call(inputs, *args, **kwargs)- This is where the layer’s logic lives. - compute_mask(inputs[, mask])- Computes an output mask tensor. - compute_output_shape(input_shape)- Computes the output shape of the layer. - compute_output_signature(input_signature)- Compute the output tensor signature of the layer based on the inputs. - count_params()- Count the total number of scalars composing the weights. - finalize_state()- Finalizes the layers state after updating layer weights. - from_config(config)- Creates a layer from its config. - get_config()- Returns the config of the layer. - get_input_at(node_index)- Retrieves the input tensor(s) of a layer at a given node. - get_input_mask_at(node_index)- Retrieves the input mask tensor(s) of a layer at a given node. - get_input_shape_at(node_index)- Retrieves the input shape(s) of a layer at a given node. - get_output_at(node_index)- Retrieves the output tensor(s) of a layer at a given node. - get_output_mask_at(node_index)- Retrieves the output mask tensor(s) of a layer at a given node. - get_output_shape_at(node_index)- Retrieves the output shape(s) of a layer at a given node. - get_weights()- Returns the current weights of the layer, as NumPy arrays. - sample()- set_max_num_samples(value)- set_weights(weights)- Sets the weights of the layer, from NumPy arrays. - with_name_scope(method)- Decorator to automatically enter the module name scope. - Attributes - activity_regularizer- Optional regularizer function for the output of this layer. - compute_dtype- The dtype of the layer’s computations. - dtype- The dtype of the layer weights. - dtype_policy- The dtype policy associated with this layer. - dynamic- Whether the layer is dynamic (eager-only); set in the constructor. - inbound_nodes- Return Functional API nodes upstream of this layer. - input- Retrieves the input tensor(s) of a layer. - input_mask- Retrieves the input mask tensor(s) of a layer. - input_shape- Retrieves the input shape(s) of a layer. - input_spec- InputSpec instance(s) describing the input format for this layer. - losses- List of losses added using the add_loss() API. - metrics- List of metrics added using the add_metric() API. - name- Name of the layer (string), set in the constructor. - name_scope- Returns a tf.name_scope instance for this class. - non_trainable_variables- non_trainable_weights- List of all non-trainable weights tracked by this layer. - outbound_nodes- Return Functional API nodes downstream of this layer. - output- Retrieves the output tensor(s) of a layer. - output_mask- Retrieves the output mask tensor(s) of a layer. - output_shape- Retrieves the output shape(s) of a layer. - stateful- submodules- Sequence of all sub-modules. - supports_masking- Whether this layer supports computing a mask using compute_mask. - trainable- trainable_variables- trainable_weights- List of all trainable weights tracked by this layer. - updates- variable_dtype- Alias of Layer.dtype, the dtype of the weights. - variables- Returns the list of all layer variables/weights. - weights- Returns the list of all layer variables/weights. - 
abstract add(embeddings: tensorflow.python.framework.ops.Tensor, items_metadata: Dict[str, tensorflow.python.framework.ops.Tensor], training=True)[source]
 - 
property required_features
 - 
property max_num_samples
 
- 
abstract