merlin.models.tf.EmbeddingFeatures
-
class
merlin.models.tf.
EmbeddingFeatures
(*args, **kwargs)[source] Bases:
merlin.models.tf.core.tabular.TabularBlock
Input block for embedding-lookups for categorical features.
For multi-hot features, the embeddings will be aggregated into a single tensor using the mean.
- Parameters
- pre: Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional
Transformations to apply on the inputs when the module is called (so before call).
- post: Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional
Transformations to apply on the inputs after the module is called (so after call).
- aggregation: Union[str, TabularAggregation], optional
Aggregation to apply after processing the call-method to output a single Tensor.
Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”.
- schema: Optional[DatasetSchema]
DatasetSchema containing the columns used in this block.
- name: Optional[str]
Name of the layer.
-
__init__
(feature_config: Dict[str, tensorflow.python.tpu.tpu_embedding_v2_utils.FeatureConfig], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, schema: Optional[merlin.schema.schema.Schema] = None, name=None, add_default_pre=True, l2_reg: Optional[float] = 0.0, **kwargs)[source]
Methods
__init__
(feature_config[, pre, post, …])add_loss
(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric
(value[, name])Adds metric tensor to the layer.
add_update
(updates)Add update op(s), potentially dependent on layer inputs.
add_variable
(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight
([name, shape, dtype, …])Adds a new variable to the layer.
apply_to_all
(inputs[, columns_to_filter])as_tabular
([name])build
(input_shapes)build_from_config
(config)calculate_batch_size_from_input_shapes
(…)call
(inputs, **kwargs)call_outputs
(outputs[, training])check_schema
([schema])compute_call_output_shape
(input_shapes)compute_mask
(inputs[, mask])Computes an output mask tensor.
compute_output_shape
(input_shapes)compute_output_signature
(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect
(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch
(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block
([append])Connect the block to a debug block.
connect_with_residual
(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut
(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy
()count_params
()Count the total number of scalars composing the weights.
embedding_table_dataset
(table_name[, …])Creates a Dataset for the embedding table
embedding_table_df
(table_name[, …])Retrieves a dataframe with the embedding table
export_embedding_table
(table_name, export_path)Exports the embedding table to parquet file
finalize_state
()Finalizes the layers state after updating layer weights.
from_config
(config)from_features
(features[, pre, post, …])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer
(layer)from_schema
(schema[, embedding_options, …])Instantiates embedding features from the schema
get_build_config
()get_embedding_table
(table_name[, …])get_input_at
(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs
(inputs)get_output_at
(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id
(inputs[, …])get_weights
()Returns the current weights of the layer, as NumPy arrays.
lookup_feature
(name, val[, output_sequence])parse
(*block)parse_block
(input)post_call
(inputs[, transformations, …])Method that’s typically called after the forward method for post-processing.
pre_call
(inputs[, transformations])Method that’s typically called before the forward method for pre-processing.
prepare
([block, post, aggregation])Transform the inputs of this block.
register_features
(feature_shapes)repeat
([num])Repeat the block num times.
repeat_in_parallel
([num, prefix, names, …])Repeat the block num times in parallel.
repr_add
()repr_extra
()repr_ignore
()select_by_name
(name)set_aggregation
(value)- param value
set_post
(value)set_pre
(value)set_schema
([schema])set_weights
(weights)Sets the weights of the layer, from NumPy arrays.
super
()table_config
(feature_name)with_name_scope
(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMA
activity_regularizer
Optional regularizer function for the output of this layer.
aggregation
returns: :rtype: TabularAggregation, optional
compute_dtype
The dtype of the layer’s computations.
context
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
has_schema
inbound_nodes
Return Functional API nodes upstream of this layer.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
is_input
is_tabular
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Return Functional API nodes downstream of this layer.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
post
returns: :rtype: SequentialTabularTransformations, optional
pre
returns: :rtype: SequentialTabularTransformations, optional
registry
schema
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
trainable_variables
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.
-
classmethod
from_schema
(schema: merlin.schema.schema.Schema, embedding_options: merlin.models.tf.inputs.embedding.EmbeddingOptions = EmbeddingOptions(embedding_dims=None, embedding_dim_default=64, infer_embedding_sizes=False, infer_embedding_sizes_multiplier=2.0, infer_embeddings_ensure_dim_multiple_of_8=False, embeddings_initializers=None, embeddings_l2_reg=0.0, combiner='mean'), tags: Optional[Union[merlin.schema.tags.TagSet, List[str], List[merlin.schema.tags.Tags], List[Union[str, merlin.schema.tags.Tags]]]] = None, max_sequence_length: Optional[int] = None, **kwargs) → Optional[merlin.models.tf.inputs.embedding.EmbeddingFeatures][source] Instantiates embedding features from the schema
- Parameters
schema (Schema) – The features chema
embedding_options (EmbeddingOptions, optional) – An EmbeddingOptions instance, which allows for a number of options for the embedding table, by default EmbeddingOptions()
tags (Optional[TagsType], optional) – If provided, keeps only features from those tags, by default None
max_sequence_length (Optional[int], optional) – Maximum sequence length of sparse features (if any), by default None
- Returns
An instance of EmbeddingFeatures block, with the embedding layers created under-the-hood
- Return type
-
call
(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], **kwargs) → Dict[str, tensorflow.python.framework.ops.Tensor][source]
-
get_embedding_table
(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False)[source]
-
embedding_table_df
(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False, gpu: bool = True)[source] Retrieves a dataframe with the embedding table
- Parameters
table_name (Union[str, Tags]) – Tag or name of the embedding table
l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False
gpu (bool, optional) – Whether or not should use GPU, by default True
- Returns
Returns a dataframe (cudf or pandas), depending on the gpu
- Return type
Union[pd.DataFrame, cudf.DataFrame]
-
embedding_table_dataset
(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False, gpu=True) → merlin.io.dataset.Dataset[source] Creates a Dataset for the embedding table
- Parameters
table_name (Union[str, Tags]) – Tag or name of the embedding table
l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False
gpu (bool, optional) – Whether or not should use GPU, by default True
- Returns
Returns a Dataset with the embeddings
- Return type
-
export_embedding_table
(table_name: Union[str, merlin.schema.tags.Tags], export_path: str, l2_normalization: bool = False, gpu=True)[source] Exports the embedding table to parquet file
- Parameters
table_name (Union[str, Tags]) – Tag or name of the embedding table
export_path (str) – Path for the generated parquet file
l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False
gpu (bool, optional) – Whether or not should use GPU, by default True