merlin.models.tf.ParallelPredictionBlock
- 
class merlin.models.tf.ParallelPredictionBlock(*args, **kwargs)[source]
- Bases: - merlin.models.tf.core.combinators.ParallelBlock- Multi-task prediction block. - Parameters
- prediction_tasks (*PredictionTask) – List of tasks to be used for prediction. 
- task_blocks (Optional[Union[Layer, Dict[str, Layer]]]) – Task blocks to be used for prediction. 
- task_weights (Optional[List[float]]) – Weights for each task. 
- bias_block (Optional[Layer]) – Bias block to be used for prediction. 
 
 - 
__init__(*prediction_tasks: merlin.models.tf.prediction_tasks.base.PredictionTask, task_blocks: Optional[Union[keras.engine.base_layer.Layer, Dict[str, keras.engine.base_layer.Layer]]] = None, bias_block: Optional[keras.engine.base_layer.Layer] = None, task_weights=None, pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, **kwargs)[source]
 - Methods - __init__(*prediction_tasks[, task_blocks, …])- add_branch(name, block)- add_loss(losses, **kwargs)- Add loss tensor(s), potentially dependent on layer inputs. - add_metric(value[, name])- Adds metric tensor to the layer. - add_task(task[, task_weight])- add_update(updates)- Add update op(s), potentially dependent on layer inputs. - add_variable(*args, **kwargs)- Deprecated, do NOT use! Alias for add_weight. - add_weight([name, shape, dtype, …])- Adds a new variable to the layer. - apply_to_all(inputs[, columns_to_filter])- apply_to_branch(branch_name, *block)- as_tabular([name])- build(input_shape)- build_from_config(config)- calculate_batch_size_from_input_shapes(…)- call(inputs[, training, bias_outputs])- call_outputs(outputs[, training])- check_schema([schema])- compute_call_output_shape(input_shape)- compute_mask(inputs[, mask])- Computes an output mask tensor. - compute_output_shape(input_shapes)- compute_output_signature(input_signature)- Compute the output tensor signature of the layer based on the inputs. - connect(*block[, block_name, context])- Connect the block to other blocks sequentially. - connect_branch(*branches[, add_rest, post, …])- Connect the block to one or multiple branches. - connect_debug_block([append])- Connect the block to a debug block. - connect_with_residual(block[, activation])- Connect the block to other blocks sequentially with a residual connection. - connect_with_shortcut(block[, …])- Connect the block to other blocks sequentially with a shortcut connection. - copy()- count_params()- Count the total number of scalars composing the weights. - finalize_state()- Finalizes the layers state after updating layer weights. - from_config(config, **kwargs)- from_features(features[, pre, post, …])- Initializes a TabularLayer instance where the contents of features will be filtered out - from_layer(layer)- from_schema(schema[, task_blocks, …])- Built Multi-task prediction Block from schema - get_build_config()- get_input_at(node_index)- Retrieves the input tensor(s) of a layer at a given node. - get_input_mask_at(node_index)- Retrieves the input mask tensor(s) of a layer at a given node. - get_input_shape_at(node_index)- Retrieves the input shape(s) of a layer at a given node. - get_item_ids_from_inputs(inputs)- get_output_at(node_index)- Retrieves the output tensor(s) of a layer at a given node. - get_output_mask_at(node_index)- Retrieves the output mask tensor(s) of a layer at a given node. - get_output_shape_at(node_index)- Retrieves the output shape(s) of a layer at a given node. - get_padding_mask_from_item_id(inputs[, …])- get_tasks_from_schema(schema[, …])- Built Multi-task prediction Block from schema - get_weights()- Returns the current weights of the layer, as NumPy arrays. - parse(*block)- parse_block(input)- parse_config(config[, custom_objects])- pop_labels(inputs)- post_call(inputs[, transformations, …])- Method that’s typically called after the forward method for post-processing. - pre_call(inputs[, transformations])- Method that’s typically called before the forward method for pre-processing. - prepare([block, post, aggregation])- Transform the inputs of this block. - register_features(feature_shapes)- repeat([num])- Repeat the block num times. - repeat_in_parallel([num, prefix, names, …])- Repeat the block num times in parallel. - repr_add()- repr_extra()- select_by_name(name)- Select a parallel block by name - select_by_names(names)- Select a list of parallel blocks by names - select_by_tag(tags)- Select layers of parallel blocks by tags. - set_aggregation(value)- param value
 - set_post(value)- set_pre(value)- set_schema([schema])- set_weights(weights)- Sets the weights of the layer, from NumPy arrays. - super()- task_names_from_schema(schema)- with_name_scope(method)- Decorator to automatically enter the module name scope. - Attributes - REQUIRES_SCHEMA- activity_regularizer- Optional regularizer function for the output of this layer. - aggregation- returns: :rtype: TabularAggregation, optional - compute_dtype- The dtype of the layer’s computations. - context- dtype- The dtype of the layer weights. - dtype_policy- The dtype policy associated with this layer. - dynamic- Whether the layer is dynamic (eager-only); set in the constructor. - has_schema- inbound_nodes- Return Functional API nodes upstream of this layer. - input- Retrieves the input tensor(s) of a layer. - input_mask- Retrieves the input mask tensor(s) of a layer. - input_shape- Retrieves the input shape(s) of a layer. - input_spec- InputSpec instance(s) describing the input format for this layer. - is_input- is_tabular- layers- losses- List of losses added using the add_loss() API. - metrics- List of metrics added using the add_metric() API. - name- Name of the layer (string), set in the constructor. - name_scope- Returns a tf.name_scope instance for this class. - non_trainable_variables- non_trainable_weights- List of all non-trainable weights tracked by this layer. - outbound_nodes- Return Functional API nodes downstream of this layer. - output- Retrieves the output tensor(s) of a layer. - output_mask- Retrieves the output mask tensor(s) of a layer. - output_shape- Retrieves the output shape(s) of a layer. - parallel_dict- parallel_values- post- returns: :rtype: SequentialTabularTransformations, optional - pre- returns: :rtype: SequentialTabularTransformations, optional - registry- schema- stateful- submodules- Sequence of all sub-modules. - supports_masking- Whether this layer supports computing a mask using compute_mask. - trainable- trainable_variables- trainable_weights- List of all trainable weights tracked by this layer. - updates- variable_dtype- Alias of Layer.dtype, the dtype of the weights. - variables- Returns the list of all layer variables/weights. - weights- Returns the list of all layer variables/weights. - 
classmethod get_tasks_from_schema(schema, task_weight_dict: Optional[Dict[str, float]] = None, task_pre_dict: Optional[Dict[str, merlin.models.tf.core.base.Block]] = None)[source]
- Built Multi-task prediction Block from schema - Parameters
- schema (Schema) – The Schema with the input features 
- task_weight_dict (Optional[Dict[str, float]], optional) – Dict where keys are target feature names and values are weights for each task, by default None 
- task_pre_dict (Optional[Dict[str, Block]], optional) – Dict where keys are target feature names and values are Blocks to be used as pre for those tasks 
 
 
 - 
classmethod from_schema(schema: merlin.schema.schema.Schema, task_blocks: Optional[Union[keras.engine.base_layer.Layer, Dict[str, keras.engine.base_layer.Layer]]] = None, task_weight_dict: Optional[Dict[str, float]] = None, task_pre_dict: Optional[Dict[str, merlin.models.tf.core.base.Block]] = None, bias_block: Optional[keras.engine.base_layer.Layer] = None, **kwargs) → merlin.models.tf.prediction_tasks.base.ParallelPredictionBlock[source]
- Built Multi-task prediction Block from schema - Parameters
- schema (Schema) – The Schema with the input features 
- task_blocks (Optional[Union[Layer, Dict[str, Layer]]], optional) – Task blocks to be used for prediction, by default None 
- task_weight_dict (Optional[Dict[str, float]], optional) – Dict where keys are target feature names and values are weights for each task, by default None 
- task_pre_dict (Optional[Dict[str, Block]], optional) – Dict where keys are target feature names and values are Blocks to be used as pre for those tasks 
- bias_block (Optional[Layer], optional) – Bias block to be used for prediction, by default None 
 
 
 - 
call(inputs: Union[Dict[str, tensorflow.python.framework.ops.Tensor], tensorflow.python.framework.ops.Tensor], training: bool = False, bias_outputs=None, **kwargs)[source]
 - 
property task_blocks
 - 
property task_names
 - 
parallel_layers: Union[List[TabularBlock], Dict[str, TabularBlock]]