merlin.models.tf.EmbeddingFeatures
-
class
merlin.models.tf.EmbeddingFeatures(*args, **kwargs)[source] Bases:
merlin.models.tf.core.tabular.TabularBlockInput block for embedding-lookups for categorical features.
For multi-hot features, the embeddings will be aggregated into a single tensor using the mean.
- Parameters
- pre: Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional
Transformations to apply on the inputs when the module is called (so before call).
- post: Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional
Transformations to apply on the inputs after the module is called (so after call).
- aggregation: Union[str, TabularAggregation], optional
Aggregation to apply after processing the call-method to output a single Tensor.
Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”.
- schema: Optional[DatasetSchema]
DatasetSchema containing the columns used in this block.
- name: Optional[str]
Name of the layer.
-
__init__(feature_config: Dict[str, tensorflow.python.tpu.tpu_embedding_v2_utils.FeatureConfig], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, schema: Optional[merlin.schema.schema.Schema] = None, name=None, add_default_pre=True, l2_reg: Optional[float] = 0.0, **kwargs)[source]
Methods
__init__(feature_config[, pre, post, …])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
apply_to_all(inputs[, columns_to_filter])as_tabular([name])build(input_shapes)build_from_config(config)calculate_batch_size_from_input_shapes(…)call(inputs, **kwargs)call_outputs(outputs[, training])check_schema([schema])compute_call_output_shape(input_shapes)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shapes)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
embedding_table_dataset(table_name[, …])Creates a Dataset for the embedding table
embedding_table_df(table_name[, …])Retrieves a dataframe with the embedding table
export_embedding_table(table_name, export_path)Exports the embedding table to parquet file
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)from_features(features[, pre, post, …])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer(layer)from_schema(schema[, embedding_options, …])Instantiates embedding features from the schema
get_build_config()get_embedding_table(table_name[, …])get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
lookup_feature(name, val[, output_sequence])parse(*block)parse_block(input)post_call(inputs[, transformations, …])Method that’s typically called after the forward method for post-processing.
pre_call(inputs[, transformations])Method that’s typically called before the forward method for pre-processing.
prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
repr_add()repr_extra()repr_ignore()select_by_name(name)select_by_tag(tags)set_aggregation(value)- param value
set_post(value)set_pre(value)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
super()table_config(feature_name)with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
aggregationreturns: :rtype: TabularAggregation, optional
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
has_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
is_inputis_tabularlossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
postreturns: :rtype: SequentialTabularTransformations, optional
prereturns: :rtype: SequentialTabularTransformations, optional
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
classmethod
from_schema(schema: merlin.schema.schema.Schema, embedding_options: merlin.models.tf.inputs.embedding.EmbeddingOptions = EmbeddingOptions(embedding_dims=None, embedding_dim_default=64, infer_embedding_sizes=False, infer_embedding_sizes_multiplier=2.0, infer_embeddings_ensure_dim_multiple_of_8=False, embeddings_initializers=None, embeddings_l2_reg=0.0, combiner='mean'), tags: Optional[Union[merlin.schema.tags.TagSet, List[str], List[merlin.schema.tags.Tags], List[Union[str, merlin.schema.tags.Tags]]]] = None, max_sequence_length: Optional[int] = None, **kwargs) → Optional[merlin.models.tf.inputs.embedding.EmbeddingFeatures][source] Instantiates embedding features from the schema
- Parameters
schema (Schema) – The features chema
embedding_options (EmbeddingOptions, optional) – An EmbeddingOptions instance, which allows for a number of options for the embedding table, by default EmbeddingOptions()
tags (Optional[TagsType], optional) – If provided, keeps only features from those tags, by default None
max_sequence_length (Optional[int], optional) – Maximum sequence length of sparse features (if any), by default None
- Returns
An instance of EmbeddingFeatures block, with the embedding layers created under-the-hood
- Return type
-
call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], **kwargs) → Dict[str, tensorflow.python.framework.ops.Tensor][source]
-
get_embedding_table(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False)[source]
-
embedding_table_df(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False, gpu: bool = True)[source] Retrieves a dataframe with the embedding table
- Parameters
table_name (Union[str, Tags]) – Tag or name of the embedding table
l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False
gpu (bool, optional) – Whether or not should use GPU, by default True
- Returns
Returns a dataframe (cudf or pandas), depending on the gpu
- Return type
Union[pd.DataFrame, cudf.DataFrame]
-
embedding_table_dataset(table_name: Union[str, merlin.schema.tags.Tags], l2_normalization: bool = False, gpu=True) → merlin.io.dataset.Dataset[source] Creates a Dataset for the embedding table
- Parameters
table_name (Union[str, Tags]) – Tag or name of the embedding table
l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False
gpu (bool, optional) – Whether or not should use GPU, by default True
- Returns
Returns a Dataset with the embeddings
- Return type
-
export_embedding_table(table_name: Union[str, merlin.schema.tags.Tags], export_path: str, l2_normalization: bool = False, gpu=True)[source] Exports the embedding table to parquet file
- Parameters
table_name (Union[str, Tags]) – Tag or name of the embedding table
export_path (str) – Path for the generated parquet file
l2_normalization (bool, optional) – Whether the L2-normalization should be applied to embeddings (common approach for Matrix Factorization and Retrieval models in general), by default False
gpu (bool, optional) – Whether or not should use GPU, by default True