merlin.models.tf.ReplaceMaskedEmbeddings#

class merlin.models.tf.ReplaceMaskedEmbeddings(*args, **kwargs)[source]#

Bases: merlin.models.tf.core.base.Block

Takes a 3D input tensor (batch size x seq. length x embedding dim) and replaces

by a dummy trainable single embedding at the positions to be masked. This block looks for the Keras mask (._keras_mask) in the following order:

  1. Checks if the input tensor has a mask

  2. Checks if there is a single target and if it has a mask

3. If there are multiple targets (dict) returns the mask of the target that matches the first 2 dims of the input

This is useful to be used when PredictMasked() transformation is used in the Loader, which randomly selects some targets to be predicted and uses Keras Masking to cascade the _keras_mask. By replacing input embeddings at masked positions we avoid target leakage when training models with Masked Language Modeling (BERT-like)

Note: To support inference, the input sequence and its corresponding mask should be extended by one position at the end to account for the next-item (target) position. To do this, you should set SequenceMaskLastInference as a pre-layer of

ReplaceMaskedEmbeddings() using the sequential-block: `mm.SequentialBlock([mm.SequenceMaskLastInference(), mm.ReplaceMaskedEmbeddings()])`

__init__(**kwargs)[source]#

Methods

__init__(**kwargs)

add_loss(losses, **kwargs)

Add loss tensor(s), potentially dependent on layer inputs.

add_metric(value[, name])

Adds metric tensor to the layer.

add_update(updates)

Add update op(s), potentially dependent on layer inputs.

add_variable(*args, **kwargs)

Deprecated, do NOT use! Alias for add_weight.

add_weight([name, shape, dtype, ...])

Adds a new variable to the layer.

as_tabular([name])

build(input_shape)

build_from_config(config)

call(inputs[, targets])

If the sequence of input embeddings or the corresponding sequential targets is masked (with tensor._keras_mask defined), replaces the input embeddings for masked elements :param inputs: A tensor with sequences of vectors. Needs to be 3D (batch_size, sequence_length, embeddings dim). If inputs._keras_mask is defined uses it to infer the mask :type inputs: Union[tf.Tensor, tf.RaggedTensor] :param targets: The target values, from which the mask can be extracted if targets inputs._keras_mask is defined. :type targets: Union[tf.Tensor, tf.RaggedTensor, TabularData], optional.

call_outputs(outputs[, training])

check_schema([schema])

compute_mask(inputs[, mask])

Computes an output mask tensor.

compute_output_shape(input_shape)

Computes the output shape of the layer.

compute_output_signature(input_signature)

Compute the output tensor signature of the layer based on the inputs.

connect(*block[, block_name, context])

Connect the block to other blocks sequentially.

connect_branch(*branches[, add_rest, post, ...])

Connect the block to one or multiple branches.

connect_debug_block([append])

Connect the block to a debug block.

connect_with_residual(block[, activation])

Connect the block to other blocks sequentially with a residual connection.

connect_with_shortcut(block[, ...])

Connect the block to other blocks sequentially with a shortcut connection.

copy()

count_params()

Count the total number of scalars composing the weights.

finalize_state()

Finalizes the layers state after updating layer weights.

from_config(config)

Creates a layer from its config.

from_layer(layer)

get_build_config()

get_config()

get_input_at(node_index)

Retrieves the input tensor(s) of a layer at a given node.

get_input_mask_at(node_index)

Retrieves the input mask tensor(s) of a layer at a given node.

get_input_shape_at(node_index)

Retrieves the input shape(s) of a layer at a given node.

get_item_ids_from_inputs(inputs)

get_output_at(node_index)

Retrieves the output tensor(s) of a layer at a given node.

get_output_mask_at(node_index)

Retrieves the output mask tensor(s) of a layer at a given node.

get_output_shape_at(node_index)

Retrieves the output shape(s) of a layer at a given node.

get_padding_mask_from_item_id(inputs[, ...])

get_weights()

Returns the current weights of the layer, as NumPy arrays.

parse(*block)

parse_block(input)

prepare([block, post, aggregation])

Transform the inputs of this block.

register_features(feature_shapes)

repeat([num])

Repeat the block num times.

repeat_in_parallel([num, prefix, names, ...])

Repeat the block num times in parallel.

select_by_name(name)

select_by_tag(tags)

set_schema([schema])

set_weights(weights)

Sets the weights of the layer, from NumPy arrays.

with_name_scope(method)

Decorator to automatically enter the module name scope.

Attributes

REQUIRES_SCHEMA

activity_regularizer

Optional regularizer function for the output of this layer.

compute_dtype

The dtype of the layer's computations.

context

dtype

The dtype of the layer weights.

dtype_policy

The dtype policy associated with this layer.

dynamic

Whether the layer is dynamic (eager-only); set in the constructor.

has_schema

inbound_nodes

Return Functional API nodes upstream of this layer.

input

Retrieves the input tensor(s) of a layer.

input_mask

Retrieves the input mask tensor(s) of a layer.

input_shape

Retrieves the input shape(s) of a layer.

input_spec

InputSpec instance(s) describing the input format for this layer.

losses

List of losses added using the add_loss() API.

metrics

List of metrics added using the add_metric() API.

name

Name of the layer (string), set in the constructor.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

non_trainable_weights

List of all non-trainable weights tracked by this layer.

outbound_nodes

Return Functional API nodes downstream of this layer.

output

Retrieves the output tensor(s) of a layer.

output_mask

Retrieves the output mask tensor(s) of a layer.

output_shape

Retrieves the output shape(s) of a layer.

registry

schema

stateful

submodules

Sequence of all sub-modules.

supports_masking

Whether this layer supports computing a mask using compute_mask.

trainable

trainable_variables

trainable_weights

List of all trainable weights tracked by this layer.

updates

variable_dtype

Alias of Layer.dtype, the dtype of the weights.

variables

Returns the list of all layer variables/weights.

weights

Returns the list of all layer variables/weights.

build(input_shape)[source]#
call(inputs: Union[tensorflow.python.framework.ops.Tensor, tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor], targets: Optional[Union[tensorflow.python.framework.ops.Tensor, tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor, Dict[str, tensorflow.python.framework.ops.Tensor]]] = None) Union[tensorflow.python.framework.ops.Tensor, tensorflow.python.ops.ragged.ragged_tensor.RaggedTensor][source]#

If the sequence of input embeddings or the corresponding sequential targets is masked (with tensor._keras_mask defined), replaces the input embeddings for masked elements :param inputs: A tensor with sequences of vectors.

Needs to be 3D (batch_size, sequence_length, embeddings dim). If inputs._keras_mask is defined uses it to infer the mask

Parameters

targets (Union[tf.Tensor, tf.RaggedTensor, TabularData], optional) – The target values, from which the mask can be extracted if targets inputs._keras_mask is defined.

Returns

If training, returns a tensor with the masked inputs replaced by the dummy embedding

Return type

Union[tf.Tensor, tf.RaggedTensor]