merlin.models.tf.CategoryEncoding
-
class
merlin.models.tf.CategoryEncoding(*args, **kwargs)[source] Bases:
merlin.models.tf.core.tabular.TabularBlockA preprocessing layer which encodes integer features.
This layer provides options for condensing data into a categorical encoding. It accepts integer values as inputs, and it outputs a dense or sparse representation of those inputs. Only categorical features with “CATEGORICAL” as Tag can be transformed, and other features without this Tag would be discarded. It outputs a TabularData (Dict of features), where each feature is a 2D tensor computed based on the outputmode.
- schemaOptional[Schema]
The Schema with the input features
- output_mode: Optional[str]
Specification for the output of the layer. Defaults to “multi_hot”. Values can be “one_hot”, “multi_hot” or “count”, configuring the transformation layer as follows: - “one_hot”: Encodes each individual element in the input into a tensor with shape
(batch_size, feature_cardinality), containing a 1 at the element index. It accepts both 1D tensor or 2D tensor if squeezable (i.e., if the last dimension is 1).
- “multi_hot”: Encodes each categorical value from the 2D input features into a
multi-hot representation with shape (batch_size, feature_cardinality), with 1 at the indices present in the sequence and 0 for the other position. If 1D feature is provided, it behaves the same as “one_hot”.
- “count”: also expects 2D tensor like “multi_hot” and outputs the features
with shape (batch_size, feature_cardinality). But instead of returning “multi-hot” values, it outputs the frequency (count) of the number of items each item occurs in each sample.
- sparse: Optional[Boolean]
If true, returns a SparseTensor instead of a dense Tensor. Defaults to False. Setting sparse=True is recommended for high-cardinality features, in order to avoid out-of-memory errors.
- count_weights: Optional[Union(tf.Tensor, tf.RaggedTensor, tf.SparseTensor)]
count_weights is used to calculate weighted sum of times a token at that index appeared when output_mode is “count”
-
__init__(schema: Optional[merlin.schema.schema.Schema] = None, output_mode='one_hot', sparse=False, count_weights=None, **kwargs)[source]
Methods
__init__([schema, output_mode, sparse, …])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
apply_to_all(inputs[, columns_to_filter])as_tabular([name])build(input_shapes)build_from_config(config)calculate_batch_size_from_input_shapes(…)call(inputs, **kwargs)call_outputs(outputs[, training])check_schema([schema])compute_call_output_shape(input_shapes)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shapes)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)from_features(features[, pre, post, …])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer(layer)from_schema(schema[, tags, allow_none])Instantiate a TabularLayer instance from a DatasetSchema.
get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
parse(*block)parse_block(input)post_call(inputs[, transformations, …])Method that’s typically called after the forward method for post-processing.
pre_call(inputs[, transformations])Method that’s typically called before the forward method for pre-processing.
prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
repr_add()repr_extra()repr_ignore()select_by_name(name)select_by_tag(tags)set_aggregation(value)- param value
set_post(value)set_pre(value)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
super()with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
aggregationreturns: :rtype: TabularAggregation, optional
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
has_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
is_inputis_tabularlossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
postreturns: :rtype: SequentialTabularTransformations, optional
prereturns: :rtype: SequentialTabularTransformations, optional
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], **kwargs) → Dict[str, tensorflow.python.framework.ops.Tensor][source]
-
REQUIRES_SCHEMA= True