merlin.models.tf.ColumnBasedSampleWeight
-
class
merlin.models.tf.ColumnBasedSampleWeight(*args, **kwargs)[source] Bases:
merlin.models.tf.core.base.BlockAllows using columns (features or targets) as sample weights for a give ModelOutput.
Examples
It can be used for example for binary class weights, using the same column as the weight column and setting binary_class_weights.
``` inputs = mm.InputBlockV2(music_streaming_data.schema) output_block = mm.BinaryOutput(“like”,
- post=mm.ColumnBasedSampleWeight(
weight_column_name=”like”, binary_class_weights=((1.0, 5.0)
)
)
model = mm.Model(inputs, mm.MLPBlock([64]), output_block) ```
Another use case is computing a loss only for a subset of the examples. That is useful in multi-task learning, where one of target is conditioned on the other target (e.g. the user can only like if he viewed the video). So you can use the positive views (view==1)as the sample space for training the “like” prediction task.
``` inputs = mm.InputBlockV2(music_streaming_data.schema) output_block = mm.ParallelBlock(
“view/binary_output”: mm.BinaryOutput(“view”), “like/binary_output”: mm.BinaryOutput(“like”,
- post=mm.ColumnBasedSampleWeight(
weight_column_name=”view”,
)
)
)
model = mm.Model(inputs, mm.MLPBlock([64]), output_block) ```
- Parameters
weight_column_name (Optional[str]) – The column name to be used as weight. If should be present in the schema either as an input feature (i.e., tagged as Tags.CONTINUOUS or Tags.CATEGORICAL) or target feature (i.e., tagged as Tags.TARGET). It is optional if binary_class_weights is set (assuming the target column will be used as weight column in that case).
binary_class_weights (Optional[Tuple[float, float]], optional) – If provided, it allows setting the weights to which negative (0) and positive values (1) of weight column should be converted to result the final sample weights, by default None. It expects a two elements tuple: (negative_value, positive_value)
-
__init__(weight_column_name: Optional[str] = None, binary_class_weights: Optional[Tuple[float, float]] = None, **kwargs)[source]
Methods
__init__([weight_column_name, …])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
as_tabular([name])build(input_shapes)build_from_config(config)call(inputs[, features, targets, training, …])call_outputs(outputs[, training])check_schema([schema])compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shape)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)Creates a layer from its config.
from_layer(layer)get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
parse(*block)parse_block(input)prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
select_by_name(name)select_by_tag(tags)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
has_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
lossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.