merlin.models.tf.Encoder
-
class
merlin.models.tf.Encoder(*args, **kwargs)[source] Bases:
keras.engine.training.ModelBlock that can be used for prediction and evaluation but not for training
- Parameters
inputs (Union[Schema, tf.keras.layers.Layer]) – The input block or schema. When a schema is provided, a default input block will be created.
*blocks (tf.keras.layers.Layer) – The blocks to use for encoding.
pre (Optional[tf.keras.layers.Layer]) – A block to use before the main blocks
post (Optional[tf.keras.layers.Layer]) – A block to use after the main blocks
prep_features (Optional[bool]) – Whether this block should prepare list and scalar features from the dataloader format. By default True.
-
__init__(inputs: Union[merlin.schema.schema.Schema, keras.engine.base_layer.Layer], *blocks: keras.engine.base_layer.Layer, pre: Optional[keras.engine.base_layer.Layer] = None, post: Optional[keras.engine.base_layer.Layer] = None, prep_features: Optional[bool] = True, **kwargs)[source]
Methods
__init__(inputs, *blocks[, pre, post, …])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
batch_predict(dataset, batch_size[, …])Batched prediction using Dask.
build(input_shape)build_from_config(config)call(inputs, *[, targets, training, testing])compile([optimizer, loss, metrics, …])Configures the model for training.
compile_from_config(config)compute_loss([x, y, y_pred, sample_weight])Compute the total loss, validate it, and return it.
compute_mask(inputs[, mask])Computes an output mask tensor.
compute_metrics(x, y, y_pred, sample_weight)Update metric states and collect all metrics to be returned.
compute_output_shape(input_shape)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params()Count the total number of scalars composing the weights.
encode(dataset, index, batch_size, **kwargs)evaluate([x, y, batch_size, verbose, …])Returns the loss value & metrics values for the model in test mode.
evaluate_generator(generator[, steps, …])Evaluates the model on a data generator.
export(filepath)Create a SavedModel artifact for inference (e.g.
finalize_state()Finalizes the layers state after updating layer weights.
fit(*args, **kwargs)Fit model
fit_generator(generator[, steps_per_epoch, …])Fits the model on data yielded batch-by-batch by a Python generator.
from_config(config[, custom_objects])get_build_config()get_compile_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_layer([name, index])Retrieves a layer based on either its name (unique) or index.
get_metrics_result()Returns the model’s metrics values as a dict.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weight_paths()Retrieve all the variables and their paths for the model.
get_weights()Retrieves the weights of the model.
load_weights(filepath[, skip_mismatch, …])Loads all layer weights from a saved files.
make_predict_function([force])Creates a function that executes one step of inference.
make_test_function([force])Creates a function that executes one step of evaluation.
make_train_function([force])Creates a function that executes one step of training.
predict(x[, batch_size, verbose, steps, …])Generates output predictions for the input samples.
predict_generator(generator[, steps, …])Generates predictions for the input samples from a data generator.
predict_on_batch(x)Returns predictions for a single batch of samples.
predict_step(data)The logic for one inference step.
reset_metrics()Resets the state of all the metrics in the model.
reset_states()save(export_path[, include_optimizer, …])Saves the model to export_path as a Tensorflow Saved Model.
save_spec([dynamic_batch])Returns the tf.TensorSpec of call args as a tuple (args, kwargs).
save_weights(filepath[, overwrite, …])Saves all layer weights.
set_weights(weights)Sets the weights of the layer, from NumPy arrays.
summary([line_length, positions, print_fn, …])Prints a string summary of the network.
test_on_batch(x[, y, sample_weight, …])Test the model on a single batch of samples.
test_step(data)The logic for one evaluation step.
to_json(**kwargs)Returns a JSON string containing the network configuration.
to_yaml(**kwargs)Returns a yaml string containing the network configuration.
train_on_batch(x[, y, sample_weight, …])Runs a single gradient update on a single batch of data.
train_step(data)Train step
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
distribute_reduction_methodThe method employed to reduce per-replica values during training.
distribute_strategyThe tf.distribute.Strategy this model was created under.
dtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
jit_compileSpecify whether to compile the model with XLA.
layerslossesList of losses added using the add_loss() API.
metricsReturn metrics added using compile() or add_metric().
metrics_namesReturns the model’s display labels for all outputs.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsoutbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
run_eagerlySettable attribute indicating whether the model should run eagerly.
state_updatesDeprecated, do NOT use!
statefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsupdatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
encode(dataset: merlin.io.dataset.Dataset, index: Union[str, merlin.schema.schema.ColumnSchema, merlin.schema.schema.Schema, merlin.schema.tags.Tags], batch_size: int, **kwargs) → merlin.io.dataset.Dataset[source]
-
batch_predict(dataset: merlin.io.dataset.Dataset, batch_size: int, output_schema: Optional[merlin.schema.schema.Schema] = None, index: Optional[Union[str, merlin.schema.schema.ColumnSchema, merlin.schema.schema.Schema, merlin.schema.tags.Tags]] = None, **kwargs) → merlin.io.dataset.Dataset[source] Batched prediction using Dask. :param dataset: Dataset to predict on. :type dataset: merlin.io.Dataset :param batch_size: Batch size to use for prediction. :type batch_size: int
- Returns
- Return type
-
save(export_path: Union[str, os.PathLike], include_optimizer=True, save_traces=True) → None[source] Saves the model to export_path as a Tensorflow Saved Model. Along with merlin model metadata.
- Parameters
export_path (Union[str, os.PathLike]) – Path where model will be saved to
include_optimizer (bool, optional) – If False, do not save the optimizer state, by default True
save_traces (bool, optional) – When enabled, will store the function traces for each layer. This can be disabled, so that only the configs of each layer are stored, by default True
-
property
to_call
-
property
has_schema
-
property
schema
-
property
first
-
property
last