merlin.models.tf.TabularBlock
-
class
merlin.models.tf.TabularBlock(*args, **kwargs)[source] Bases:
merlin.models.tf.core.base.BlockLayer that’s specialized for tabular-data by integrating many often used operations.
Note, when extending this class, typically you want to overwrite the compute_call_output_shape method instead of the normal compute_output_shape. This because a Block can contain pre- and post-processing and the output-shapes are handled automatically in compute_output_shape. The output of compute_call_output_shape should be the shape that’s outputted by the call-method.
- Parameters
pre (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs when the module is called (so before call).
post (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs after the module is called (so after call).
aggregation (Union[str, TabularAggregation], optional) –
Aggregation to apply after processing the call-method to output a single Tensor.
Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”.
schema (Optional[DatasetSchema]) – DatasetSchema containing the columns used in this block.
name (Optional[str]) – Name of the layer.
-
__init__(pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, schema: Optional[merlin.schema.schema.Schema] = None, name: Optional[str] = None, is_input: bool = False, **kwargs)[source]
Methods
__init__([pre, post, aggregation, schema, …])add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, …])Adds a new variable to the layer.
apply_to_all(inputs[, columns_to_filter])as_tabular([name])build(input_shapes)build_from_config(config)call(inputs, **kwargs)call_outputs(outputs[, training])check_schema([schema])compute_call_output_shape(input_shapes)compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shapes)compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
connect(*block[, block_name, context])Connect the block to other blocks sequentially.
connect_branch(*branches[, add_rest, post, …])Connect the block to one or multiple branches.
connect_debug_block([append])Connect the block to a debug block.
connect_with_residual(block[, activation])Connect the block to other blocks sequentially with a residual connection.
connect_with_shortcut(block[, …])Connect the block to other blocks sequentially with a shortcut connection.
copy()count_params()Count the total number of scalars composing the weights.
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)from_features(features[, pre, post, …])Initializes a TabularLayer instance where the contents of features will be filtered out
from_layer(layer)from_schema(schema[, tags, allow_none])Instantiate a TabularLayer instance from a DatasetSchema.
get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_item_ids_from_inputs(inputs)get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_padding_mask_from_item_id(inputs[, …])get_weights()Returns the current weights of the layer, as NumPy arrays.
parse(*block)parse_block(input)post_call(inputs[, transformations, …])Method that’s typically called after the forward method for post-processing.
pre_call(inputs[, transformations])Method that’s typically called before the forward method for pre-processing.
prepare([block, post, aggregation])Transform the inputs of this block.
register_features(feature_shapes)repeat([num])Repeat the block num times.
repeat_in_parallel([num, prefix, names, …])Repeat the block num times in parallel.
repr_add()select_by_name(name)select_by_tag(tags)set_aggregation(value)- param value
set_post(value)set_pre(value)set_schema([schema])set_weights(weights)Sets the weights of the layer, from NumPy arrays.
super()with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
REQUIRES_SCHEMAactivity_regularizerOptional regularizer function for the output of this layer.
returns: :rtype: TabularAggregation, optional
compute_dtypeThe dtype of the layer’s computations.
contextdtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
has_schemainbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
lossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
returns: :rtype: SequentialTabularTransformations, optional
returns: :rtype: SequentialTabularTransformations, optional
registryschemastatefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
select_by_tag(tags: merlin.schema.tags.Tags) → Optional[merlin.models.tf.core.tabular.TabularBlock][source]
-
property
is_input
-
classmethod
from_schema(schema: merlin.schema.schema.Schema, tags=None, allow_none=True, **kwargs) → Optional[merlin.models.tf.core.tabular.TabularBlock][source] Instantiate a TabularLayer instance from a DatasetSchema.
- Parameters
schema –
tags –
kwargs –
- Returns
- Return type
Optional[TabularModule]
-
classmethod
from_features(features: List[str], pre: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, post: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None, name=None, **kwargs) → merlin.models.tf.core.tabular.TabularBlock[source] Initializes a TabularLayer instance where the contents of features will be filtered out
- Parameters
features (List[str]) – A list of feature-names that will be used as the first pre-processing op to filter out all other features not in this list.
pre (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs when the module is called (so before call).
post (Union[str, TabularTransformation, List[str], List[TabularTransformation]], optional) – Transformations to apply on the inputs after the module is called (so after call).
aggregation (Union[str, TabularAggregation], optional) –
Aggregation to apply after processing the call-method to output a single Tensor.
Next to providing a class that extends TabularAggregation, it’s also possible to provide the name that the class is registered in the tabular_aggregation_registry. Out of the box this contains: “concat”, “stack”, “element-wise-sum” & “element-wise-sum-item-multi”.
schema (Optional[DatasetSchema]) – DatasetSchema containing the columns used in this block.
name (Optional[str]) – Name of the layer.
- Returns
- Return type
TabularModule
-
pre_call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], transformations: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None) → Dict[str, tensorflow.python.framework.ops.Tensor][source] Method that’s typically called before the forward method for pre-processing.
- Parameters
inputs (TabularData) – input-data, typically the output of the forward method.
transformations (TabularTransformationsType, optional) –
- Returns
- Return type
TabularData
-
call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], **kwargs) → Dict[str, tensorflow.python.framework.ops.Tensor][source]
-
post_call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], transformations: Optional[Union[merlin.models.tf.core.base.Block, str, Sequence[str]]] = None, merge_with: Optional[Union[merlin.models.tf.core.tabular.TabularBlock, List[merlin.models.tf.core.tabular.TabularBlock]]] = None, aggregation: Optional[Union[str, merlin.models.tf.core.tabular.TabularAggregation]] = None) → Union[tensorflow.python.framework.ops.Tensor, Dict[str, tensorflow.python.framework.ops.Tensor]][source] Method that’s typically called after the forward method for post-processing.
- Parameters
inputs (TabularData) – input-data, typically the output of the forward method.
transformations (TabularTransformationType, optional) – Transformations to apply on the input data.
merge_with (Union[TabularModule, List[TabularModule]], optional) – Other TabularModule’s to call and merge the outputs with.
aggregation (TabularAggregationType, optional) – Aggregation to aggregate the output to a single Tensor.
- Returns
- Return type
TensorOrTabularData (Tensor when aggregation is set, else TabularData)
-
property
is_tabular
-
property
pre returns: :rtype: SequentialTabularTransformations, optional
-
property
post returns: :rtype: SequentialTabularTransformations, optional
-
property
aggregation returns: :rtype: TabularAggregation, optional