merlin.models.tf.TopKMetricsAggregator
-
class
merlin.models.tf.TopKMetricsAggregator(*args, **kwargs)[source] Bases:
keras.metrics.base_metric.Metric,merlin.models.tf.metrics.topk.TopkMetricWithLabelRelevantCountsMixinAggregator for top-k metrics (TopkMetric) that is optimized to sort top-k predictions only once for all metrics.
- *topk_metricsTopkMetric
Multiple arguments with TopkMetric instances
Methods
__init__(*topk_metrics, **kwargs)add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight(name[, shape, aggregation, …])Adds state variable.
build(input_shape)Creates the variables of the layer (for subclass implementers).
build_from_config(config)call(inputs, *args, **kwargs)This is where the layer’s logic lives.
compute_mask(inputs[, mask])Computes an output mask tensor.
compute_output_shape(input_shape)Computes the output shape of the layer.
compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params()Count the total number of scalars composing the weights.
default_metrics(top_ks, **kwargs)Returns an TopKMetricsAggregator instance with the default top-k metrics at the cut-offs defined in top_ks
finalize_state()Finalizes the layers state after updating layer weights.
from_config(config)get_build_config()get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weights()Returns the current weights of the layer, as NumPy arrays.
merge_state(metrics)Merges the state from one or more metrics.
reset_state()Resets all of the metric state variables.
reset_states()result()set_weights(weights)Sets the weights of the layer, from NumPy arrays.
update_state(y_true, y_pred[, sample_weight])with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
dtypedtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
label_relevant_countslossesList of losses added using the add_loss() API.
metricsList of metrics added using the add_metric() API.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesnon_trainable_weightsoutbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
statefulsubmodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablestrainable_weightsupdatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
-
update_state(y_true: tensorflow.python.framework.ops.Tensor, y_pred: tensorflow.python.framework.ops.Tensor, sample_weight: Optional[tensorflow.python.framework.ops.Tensor] = None)[source]
-
classmethod
default_metrics(top_ks: Sequence[int], **kwargs) → Sequence[merlin.models.tf.metrics.topk.TopkMetric][source] Returns an TopKMetricsAggregator instance with the default top-k metrics at the cut-offs defined in top_ks
- Parameters
top_ks (Sequence[int]) – List with the cut-offs for top-k metrics (e.g. [5,10,50])
- Returns
A TopKMetricsAggregator instance with the default top-k metrics at the predefined cut-offs
- Return type
Sequence[TopkMetric]