Source code for merlin.systems.dag.ensemble

#
# Copyright (c) 2022, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import sys
import time
import warnings

import cloudpickle
import fsspec

from merlin.core.protocols import Transformable
from merlin.dag import Graph
from merlin.systems.dag.runtimes.triton import TritonExecutorRuntime


[docs]class Ensemble: """ Class that represents an entire ensemble consisting of multiple models that run sequentially in tritonserver initiated by an inference request. """
[docs] def __init__(self, ops, schema, label_columns=None): """Construct a systems ensemble. Parameters ---------- ops : InferenceNode An inference node that represents the chain of operators for the ensemble. schema : Schema The schema of the input data. label_columns : List[str], optional List of strings representing label columns, by default None """ self.graph = Graph(ops) self.graph.construct_schema(schema) self.label_columns = label_columns or []
@property def input_schema(self): return self.graph.input_schema @property def output_schema(self): return self.graph.output_schema
[docs] def transform(self, transformable: Transformable, runtime=None): """Delegate transformation of input data to the executor with the necessary ensemble graph. This will traverse each node of the graph and mutate the input according to the operator in each node. Parameters ---------- transformable : Transformable Input data to the graph (DataFrame or TensorTable). runtime : Runtime, optional The graph runtime to use to transform the inputs, by default None Returns ------- Transformable transformed data """ runtime = runtime or TritonExecutorRuntime() return runtime.transform(self.graph, transformable)
[docs] def save(self, path): """Save this ensemble to disk Parameters ---------- path: str The path to save the ensemble to """ fs = fsspec.get_fs_token_paths(path)[0] fs.makedirs(path, exist_ok=True) # TODO: Include the systems version in the metadata file below # generate a file of all versions used to generate this bundle with fs.open(fs.sep.join([path, "metadata.json"]), "w") as o: json.dump( { "versions": { "python": sys.version, }, "generated_timestamp": int(time.time()), }, o, ) # dump out the full workflow (graph/stats/operators etc) using cloudpickle with fs.open(fs.sep.join([path, "ensemble.pkl"]), "wb") as o: cloudpickle.dump(self, o)
[docs] @classmethod def load(cls, path) -> "Ensemble": """Load up a saved ensemble object from disk Parameters ---------- path: str The path to load the ensemble from Returns ------- Ensemble The ensemble loaded from disk """ fs = fsspec.get_fs_token_paths(path)[0] # check version information from the metadata blob, and warn if we have a mismatch meta = json.load(fs.open(fs.sep.join([path, "metadata.json"]))) def parse_version(version): return version.split(".")[:2] def check_version(stored, current, name): if parse_version(stored) != parse_version(current): warnings.warn( f"Loading workflow generated with {name} version {stored} " f"- but we are running {name} {current}. This might cause issues" ) # make sure we don't have any major/minor version conflicts between the stored worklflow # and the current environment versions = meta["versions"] check_version(versions["python"], sys.version, "python") ensemble = cloudpickle.load(fs.open(fs.sep.join([path, "ensemble.pkl"]), "rb")) return ensemble
[docs] def export(self, export_path, runtime=None, **kwargs): """ Write out an ensemble model configuration directory. The exported ensemble is designed for use with Triton Inference Server. """ runtime = runtime or TritonExecutorRuntime() return runtime.export(self, export_path, **kwargs)