merlin.systems.dag.ops.tensorflow.PredictTensorflow#
- class merlin.systems.dag.ops.tensorflow.PredictTensorflow(model_or_path, custom_objects: Optional[dict] = None, backend='tensorflow')[source]#
Bases:
InferenceOperatorTensorFlow Model Prediction Operator.
- __init__(model_or_path, custom_objects: Optional[dict] = None, backend='tensorflow')[source]#
Instantiate a PredictTensorflow inference operator.
- Parameters:
model_or_path (Tensorflow model or string) – This can be a tensorflow model or a path to a tensorflow model.
custom_objects (dict, optional) – Any custom objects that need to be loaded with the model, by default None.
Methods
__init__(model_or_path[, custom_objects, ...])Instantiate a PredictTensorflow inference operator.
column_mapping(col_selector)Compute which output columns depend on which input columns
compute_column_schema(col_name, input_schema)compute_input_schema(root_schema, ...)Use the input schema supplied during object creation.
compute_output_schema(input_schema, col_selector)Use the output schema supplied during object creation.
compute_selector(input_schema, selector[, ...])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node(selector)_summary_
export(path, input_schema, output_schema[, ...])Export the class object as a config and all related files to the user defined path.
from_model_registry(registry, **kwargs)Loads the InferenceOperator from the provided ModelRegistry.
from_path(path, **kwargs)load_artifacts(artifact_path)Hook method that provides a way to load saved artifacts for the operator
output_column_names(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
save_artifacts([artifact_path])Save artifacts required to be reload operator state from disk
transform(col_selector, transformable)Run model inference.
validate_schemas(parents_schema, ...[, ...])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependenciesDefines an optional list of column dependencies for this operator.
dynamic_dtypesProvides a clear common english identifier for this operator.
exportable_backendsis_subgraphlabeloutput_dtypeoutput_propertiesoutput_tagsscalar_shapesupported_formatssupportsReturns what kind of data representation this operator supports
- transform(col_selector: ColumnSelector, transformable: Transformable) Transformable[source]#
Run model inference. Returning predictions.
- Parameters:
col_selector (ColumnSelector) – Unused ColumunSelector input
transformable (Transformable) – Input features to model
- Returns:
Model Predictions
- Return type:
Transformable
- property export_name#
Provides a clear common english identifier for this operator.
- Returns:
Name of the current class as spelled in module.
- Return type:
String