# Copyright 2021 NVIDIA Corporation. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

# Each user is responsible for checking the content of datasets and the
# applicable licenses and determining if suitable for the intended use.
http://developer.download.nvidia.com/notebooks/dlsw-notebooks/merlin_hugectr_hugectr-wdl-prediction/nvidia_logo.png

HugeCTR Wide and Deep Model with Criteo

Overview

In this notebook, we provide a tutorial that shows how to train a wide and deep model using the high-level Python API from HugeCTR on the original Criteo dataset as training data. We show how to produce prediction results based on different types of local database.

Setup HugeCTR

To setup the environment, refer to HugeCTR Example Notebooks and follow the instructions there before running the following.

Dataset Preprocessing

Generate training and validation data folders

# define some data folder to store the original and preprocessed data
# Standard Libraries
import os
from time import time
import re
import shutil
import glob
import warnings
BASE_DIR = "/wdl_train"
train_path  = os.path.join(BASE_DIR, "train")
val_path = os.path.join(BASE_DIR, "val")
CUDA_VISIBLE_DEVICES = os.environ.get("CUDA_VISIBLE_DEVICES", "0")
n_workers = len(CUDA_VISIBLE_DEVICES.split(","))
frac_size = 0.15
allow_multi_gpu = False
use_rmm_pool = False
max_day = None  # (Optional) -- Limit the dataset to day 0-max_day for debugging

if os.path.isdir(train_path):
    shutil.rmtree(train_path)
os.makedirs(train_path)

if os.path.isdir(val_path):
    shutil.rmtree(val_path)
os.makedirs(val_path)
!ls -l $train_path
total 0

Download the original Criteo dataset

!apt-get install wget
!wget -P $train_path https://storage.googleapis.com/criteo-cail-datasets/day_0.gz

Split the dataset into training and validation.

#!gzip -d -c $train_path/day_0.gz > day_0
!head -n 45840617 day_0 > $train_path/train.txt
!tail -n 2000000 day_0 > $val_path/test.txt 

Preprocessing with NVTabular

%%writefile /wdl_train/preprocess.py
import os
import sys
import argparse
import glob
import time
import numpy as np
import pandas as pd
import shutil

import dask_cudf
from dask_cuda import LocalCUDACluster
from dask.distributed import Client

import cudf
import rmm
import nvtabular as nvt
from nvtabular.io import Shuffle
from nvtabular.utils import device_mem_size
from nvtabular.ops import Categorify, Clip, FillMissing, LambdaOp, Normalize, Rename, Operator, get_embedding_sizes
#%load_ext memory_profiler

import logging
logging.basicConfig(format='%(asctime)s %(message)s')
logging.root.setLevel(logging.NOTSET)
logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('asyncio').setLevel(logging.WARNING)

# define dataset schema
CATEGORICAL_COLUMNS=["C" + str(x) for x in range(1, 27)]
CONTINUOUS_COLUMNS=["I" + str(x) for x in range(1, 14)]
LABEL_COLUMNS = ['label']
COLUMNS =  LABEL_COLUMNS + CONTINUOUS_COLUMNS +  CATEGORICAL_COLUMNS
#/samples/criteo mode doesn't have dense features
criteo_COLUMN=LABEL_COLUMNS +  CATEGORICAL_COLUMNS
#For new feature cross columns
CROSS_COLUMNS = []


NUM_INTEGER_COLUMNS = 13
NUM_CATEGORICAL_COLUMNS = 26
NUM_TOTAL_COLUMNS = 1 + NUM_INTEGER_COLUMNS + NUM_CATEGORICAL_COLUMNS


# Initialize RMM pool on ALL workers
def setup_rmm_pool(client, pool_size):
    client.run(rmm.reinitialize, pool_allocator=True, initial_pool_size=pool_size)
    return None

#compute the partition size with GB
def bytesto(bytes, to, bsize=1024):
    a = {'k' : 1, 'm': 2, 'g' : 3, 't' : 4, 'p' : 5, 'e' : 6 }
    r = float(bytes)
    return bytes / (bsize ** a[to])

#process the data with NVTabular
def process_NVT(args):

    if args.feature_cross_list:
        feature_pairs = [pair.split("_") for pair in args.feature_cross_list.split(",")]
        for pair in feature_pairs:
            CROSS_COLUMNS.append(pair[0]+'_'+pair[1])


    logging.info('NVTabular processing')
    train_input = os.path.join(args.data_path, "train/train.txt")
    val_input = os.path.join(args.data_path, "val/test.txt")
    PREPROCESS_DIR_temp_train = os.path.join(args.out_path, 'train/temp-parquet-after-conversion')
    PREPROCESS_DIR_temp_val = os.path.join(args.out_path, 'val/temp-parquet-after-conversion')
    PREPROCESS_DIR_temp = [PREPROCESS_DIR_temp_train, PREPROCESS_DIR_temp_val]
    train_output = os.path.join(args.out_path, "train")
    val_output = os.path.join(args.out_path, "val")

    # Make sure we have a clean parquet space for cudf conversion
    for one_path in PREPROCESS_DIR_temp:
        if os.path.exists(one_path):
            shutil.rmtree(one_path)
        os.mkdir(one_path)


    ## Get Dask Client

    # Deploy a Single-Machine Multi-GPU Cluster
    device_size = device_mem_size(kind="total")
    cluster = None
    if args.protocol == "ucx":
        UCX_TLS = os.environ.get("UCX_TLS", "tcp,cuda_copy,cuda_ipc,sockcm")
        os.environ["UCX_TLS"] = UCX_TLS
        cluster = LocalCUDACluster(
            protocol = args.protocol,
            CUDA_VISIBLE_DEVICES = args.devices,
            n_workers = len(args.devices.split(",")),
            enable_nvlink=True,
            device_memory_limit = int(device_size * args.device_limit_frac),
            dashboard_address=":" + args.dashboard_port
        )
    else:
        cluster = LocalCUDACluster(
            protocol = args.protocol,
            n_workers = len(args.devices.split(",")),
            CUDA_VISIBLE_DEVICES = args.devices,
            device_memory_limit = int(device_size * args.device_limit_frac),
            dashboard_address=":" + args.dashboard_port
        )



    # Create the distributed client
    client = Client(cluster)
    if args.device_pool_frac > 0.01:
        setup_rmm_pool(client, int(args.device_pool_frac*device_size))


    #calculate the total processing time
    runtime = time.time()

    #test dataset without the label feature
    if args.dataset_type == 'test':
        global LABEL_COLUMNS
        LABEL_COLUMNS = []

    ##-----------------------------------##
    # Dask rapids converts txt to parquet
    # Dask cudf dataframe = ddf

    ## train/valid txt to parquet
    train_valid_paths = [(train_input,PREPROCESS_DIR_temp_train),(val_input,PREPROCESS_DIR_temp_val)]

    for input, temp_output in train_valid_paths:

        ddf = dask_cudf.read_csv(input,sep='\t',names=LABEL_COLUMNS + CONTINUOUS_COLUMNS + CATEGORICAL_COLUMNS)

        ## Convert label col to FP32
        if args.parquet_format and args.dataset_type == 'train':
            ddf["label"] = ddf['label'].astype('float32')

        # Save it as parquet format for better memory usage
        ddf.to_parquet(temp_output,header=True)
        ##-----------------------------------##

    COLUMNS =  LABEL_COLUMNS + CONTINUOUS_COLUMNS + CROSS_COLUMNS + CATEGORICAL_COLUMNS
    train_paths = glob.glob(os.path.join(PREPROCESS_DIR_temp_train, "*.parquet"))
    valid_paths = glob.glob(os.path.join(PREPROCESS_DIR_temp_val, "*.parquet"))

    categorify_op = Categorify(freq_threshold=args.freq_limit)
    cat_features = CATEGORICAL_COLUMNS >> categorify_op
    cont_features = CONTINUOUS_COLUMNS >> FillMissing() >> Clip(min_value=0) >> Normalize()
    cross_cat_op = Categorify(encode_type="combo", freq_threshold=args.freq_limit)

    features = LABEL_COLUMNS
    
    if args.criteo_mode == 0:
        features += cont_features
        if args.feature_cross_list:
            feature_pairs = [pair.split("_") for pair in args.feature_cross_list.split(",")]
            for pair in feature_pairs:
                features += [pair] >> cross_cat_op
    features += cat_features

    workflow = nvt.Workflow(features, client=client)

    logging.info("Preprocessing")

    output_format = 'hugectr'
    if args.parquet_format:
        output_format = 'parquet'

    # just for /samples/criteo model
    train_ds_iterator = nvt.Dataset(train_paths, engine='parquet', part_size=int(args.part_mem_frac * device_size))
    valid_ds_iterator = nvt.Dataset(valid_paths, engine='parquet', part_size=int(args.part_mem_frac * device_size))

    shuffle = None
    if args.shuffle == "PER_WORKER":
        shuffle = nvt.io.Shuffle.PER_WORKER
    elif args.shuffle == "PER_PARTITION":
        shuffle = nvt.io.Shuffle.PER_PARTITION

    logging.info('Train Datasets Preprocessing.....')

    dict_dtypes = {}
    for col in CATEGORICAL_COLUMNS:
        dict_dtypes[col] = np.int64
    if not args.criteo_mode:
        for col in CONTINUOUS_COLUMNS:
            dict_dtypes[col] = np.float32
    for col in CROSS_COLUMNS:
        dict_dtypes[col] = np.int64
    for col in LABEL_COLUMNS:
        dict_dtypes[col] = np.float32
    
    conts = CONTINUOUS_COLUMNS if not args.criteo_mode else []
    
    workflow.fit(train_ds_iterator)
    
    if output_format == 'hugectr':
        workflow.transform(train_ds_iterator).to_hugectr(
                cats=CATEGORICAL_COLUMNS + CROSS_COLUMNS,
                conts=conts,
                labels=LABEL_COLUMNS,
                output_path=train_output,
                shuffle=shuffle,
                out_files_per_proc=args.out_files_per_proc,
                num_threads=args.num_io_threads)
    else:
        workflow.transform(train_ds_iterator).to_parquet(
                output_path=train_output,
                dtypes=dict_dtypes,
                cats=CATEGORICAL_COLUMNS + CROSS_COLUMNS,
                conts=conts,
                labels=LABEL_COLUMNS,
                shuffle=shuffle,
                out_files_per_proc=args.out_files_per_proc,
                num_threads=args.num_io_threads)
        
        
        
    ###Getting slot size###    
    #--------------------##
    embeddings_dict_cat = categorify_op.get_embedding_sizes(CATEGORICAL_COLUMNS)
    embeddings_dict_cross = cross_cat_op.get_embedding_sizes(CROSS_COLUMNS)
    embeddings = [embeddings_dict_cat[c][0] for c in CATEGORICAL_COLUMNS] + [embeddings_dict_cross[c][0] for c in CROSS_COLUMNS]
    
    print(embeddings)
    ##--------------------##

    logging.info('Valid Datasets Preprocessing.....')

    if output_format == 'hugectr':
        workflow.transform(valid_ds_iterator).to_hugectr(
                cats=CATEGORICAL_COLUMNS + CROSS_COLUMNS,
                conts=conts,
                labels=LABEL_COLUMNS,
                output_path=val_output,
                shuffle=shuffle,
                out_files_per_proc=args.out_files_per_proc,
                num_threads=args.num_io_threads)
    else:
        workflow.transform(valid_ds_iterator).to_parquet(
                output_path=val_output,
                dtypes=dict_dtypes,
                cats=CATEGORICAL_COLUMNS + CROSS_COLUMNS,
                conts=conts,
                labels=LABEL_COLUMNS,
                shuffle=shuffle,
                out_files_per_proc=args.out_files_per_proc,
                num_threads=args.num_io_threads)

    embeddings_dict_cat = categorify_op.get_embedding_sizes(CATEGORICAL_COLUMNS)
    embeddings_dict_cross = cross_cat_op.get_embedding_sizes(CROSS_COLUMNS)
    embeddings = [embeddings_dict_cat[c][0] for c in CATEGORICAL_COLUMNS] + [embeddings_dict_cross[c][0] for c in CROSS_COLUMNS]
    
    print(embeddings)
    ##--------------------##

    ## Shutdown clusters
    client.close()
    logging.info('NVTabular processing done')

    runtime = time.time() - runtime

    print("\nDask-NVTabular Criteo Preprocessing")
    print("--------------------------------------")
    print(f"data_path          | {args.data_path}")
    print(f"output_path        | {args.out_path}")
    print(f"partition size     | {'%.2f GB'%bytesto(int(args.part_mem_frac * device_size),'g')}")
    print(f"protocol           | {args.protocol}")
    print(f"device(s)          | {args.devices}")
    print(f"rmm-pool-frac      | {(args.device_pool_frac)}")
    print(f"out-files-per-proc | {args.out_files_per_proc}")
    print(f"num_io_threads     | {args.num_io_threads}")
    print(f"shuffle            | {args.shuffle}")
    print("======================================")
    print(f"Runtime[s]         | {runtime}")
    print("======================================\n")


def parse_args():
    parser = argparse.ArgumentParser(description=("Multi-GPU Criteo Preprocessing"))

    #
    # System Options
    #

    parser.add_argument("--data_path", type=str, help="Input dataset path (Required)")
    parser.add_argument("--out_path", type=str, help="Directory path to write output (Required)")
    parser.add_argument(
        "-d",
        "--devices",
        default=os.environ.get("CUDA_VISIBLE_DEVICES", "0"),
        type=str,
        help='Comma-separated list of visible devices (e.g. "0,1,2,3"). '
    )
    parser.add_argument(
        "-p",
        "--protocol",
        choices=["tcp", "ucx"],
        default="tcp",
        type=str,
        help="Communication protocol to use (Default 'tcp')",
    )
    parser.add_argument(
        "--device_limit_frac",
        default=0.5,
        type=float,
        help="Worker device-memory limit as a fraction of GPU capacity (Default 0.8). "
    )
    parser.add_argument(
        "--device_pool_frac",
        default=0.9,
        type=float,
        help="RMM pool size for each worker  as a fraction of GPU capacity (Default 0.9). "
        "The RMM pool frac is the same for all GPUs, make sure each one has enough memory size",
    )
    parser.add_argument(
        "--num_io_threads",
        default=0,
        type=int,
        help="Number of threads to use when writing output data (Default 0). "
        "If 0 is specified, multi-threading will not be used for IO.",
    )

    #
    # Data-Decomposition Parameters
    #

    parser.add_argument(
        "--part_mem_frac",
        default=0.125,
        type=float,
        help="Maximum size desired for dataset partitions as a fraction "
        "of GPU capacity (Default 0.125)",
    )
    parser.add_argument(
        "--out_files_per_proc",
        default=1,
        type=int,
        help="Number of output files to write on each worker (Default 1)",
    )

    #
    # Preprocessing Options
    #

    parser.add_argument(
        "-f",
        "--freq_limit",
        default=0,
        type=int,
        help="Frequency limit for categorical encoding (Default 0)",
    )
    parser.add_argument(
        "-s",
        "--shuffle",
        choices=["PER_WORKER", "PER_PARTITION", "NONE"],
        default="PER_PARTITION",
        help="Shuffle algorithm to use when writing output data to disk (Default PER_PARTITION)",
    )

    parser.add_argument(
        "--feature_cross_list", default=None, type=str, help="List of feature crossing cols (e.g. C1_C2, C3_C4)"
    )

    #
    # Diagnostics Options
    #

    parser.add_argument(
        "--profile",
        metavar="PATH",
        default=None,
        type=str,
        help="Specify a file path to export a Dask profile report (E.g. dask-report.html)."
        "If this option is excluded from the command, not profile will be exported",
    )
    parser.add_argument(
        "--dashboard_port",
        default="8787",
        type=str,
        help="Specify the desired port of Dask's diagnostics-dashboard (Default `3787`). "
        "The dashboard will be hosted at http://<IP>:<PORT>/status",
    )

    #
    # Format
    #

    parser.add_argument('--criteo_mode', type=int, default=0)
    parser.add_argument('--parquet_format', type=int, default=1)
    parser.add_argument('--dataset_type', type=str, default='train')

    args = parser.parse_args()
    args.n_workers = len(args.devices.split(","))
    return args
if __name__ == '__main__':

    args = parse_args()

    process_NVT(args)
Writing /wdl_train/preprocess.py
!python3 /wdl_train/preprocess.py --data_path /wdl_train/ \
--out_path /wdl_train/ --freq_limit 6 --feature_cross_list C1_C2,C3_C4 \
--device_pool_frac 0.5  --devices '0' --num_io_threads 2
2023-02-10 10:32:34,808 NVTabular processing
2023-02-10 10:32:36,590 - distributed.preloading - INFO - Creating preload: dask_cuda.initialize
2023-02-10 10:32:36,590 - distributed.preloading - INFO - Import preload module: dask_cuda.initialize
2023-02-10 10:32:36,604 Unable to start CUDA Context
Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 782, in _nvmlGetFunctionPointer
    _nvmlGetFunctionPointer_cache[name] = getattr(nvmlLib, name)
  File "/usr/lib/python3.8/ctypes/__init__.py", line 386, in __getattr__
    func = self.__getitem__(name)
  File "/usr/lib/python3.8/ctypes/__init__.py", line 391, in __getitem__
    func = self._FuncPtr((name_or_ordinal, self))
AttributeError: /usr/lib/x86_64-linux-gnu/libnvidia-ml.so.1: undefined symbol: nvmlDeviceGetComputeRunningProcesses_v2

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/local/lib/python3.8/dist-packages/dask_cuda/initialize.py", line 41, in _create_cuda_context
    ctx = has_cuda_context()
  File "/usr/local/lib/python3.8/dist-packages/distributed/diagnostics/nvml.py", line 164, in has_cuda_context
    running_processes = pynvml.nvmlDeviceGetComputeRunningProcesses_v2(handle)
  File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 2191, in nvmlDeviceGetComputeRunningProcesses_v2
    fn = _nvmlGetFunctionPointer("nvmlDeviceGetComputeRunningProcesses_v2")
  File "/usr/local/lib/python3.8/dist-packages/pynvml/nvml.py", line 785, in _nvmlGetFunctionPointer
    raise NVMLError(NVML_ERROR_FUNCTION_NOT_FOUND)
pynvml.nvml.NVMLError_FunctionNotFound: Function Not Found
/usr/local/lib/python3.8/dist-packages/merlin/core/utils.py:384: FutureWarning: The `client` argument is deprecated from DaskExecutor and will be removed in a future version of NVTabular. By default, a global client in the same python context will be detected automatically, and `merlin.utils.set_dask_client` (as well as `Distributed` and `Serial`) can be used for explicit control.
  warnings.warn(
2023-02-10 10:32:54,260 Preprocessing
2023-02-10 10:32:54,521 Train Datasets Preprocessing.....
[249058, 19561, 14212, 6890, 18592, 4, 6356, 1254, 52, 226170, 80508, 72308, 11, 2169, 7597, 61, 4, 923, 15, 249619, 168974, 243480, 68212, 9169, 75, 34, 281564, 415262]
2023-02-10 10:34:09,155 Valid Datasets Preprocessing.....
[249058, 19561, 14212, 6890, 18592, 4, 6356, 1254, 52, 226170, 80508, 72308, 11, 2169, 7597, 61, 4, 923, 15, 249619, 168974, 243480, 68212, 9169, 75, 34, 281564, 415262]
2023-02-10 10:34:10,596 NVTabular processing done

Dask-NVTabular Criteo Preprocessing
--------------------------------------
data_path          | /wdl_train/
output_path        | /wdl_train/
partition size     | 3.97 GB
protocol           | tcp
device(s)          | 0
rmm-pool-frac      | 0.5
out-files-per-proc | 1
num_io_threads     | 2
shuffle            | PER_PARTITION
======================================
Runtime[s]         | 92.90126419067383
======================================

Check the preprocessed training data

!ls -ll /wdl_train/train
total 14449264
-rw-r--r-- 1 root root          34 Feb 10 10:34 _file_list.txt
-rw-r--r-- 1 root root      450893 Feb 10 10:34 _metadata
-rw-r--r-- 1 root root        1510 Feb 10 10:34 _metadata.json
-rw-r--r-- 1 root root  3245838178 Feb 10 10:34 part_0.parquet
-rw-r--r-- 1 root root       27296 Feb 10 10:33 schema.pbtxt
drwxr-xr-x 2 root root        4096 Feb 10 10:32 temp-parquet-after-conversion
-rw-r--r-- 1 root root 11549710546 Feb 10 10:32 train.txt

WDL Model Training

%%writefile './model.py'
import hugectr
#from mpi4py import MPI
solver = hugectr.CreateSolver(max_eval_batches = 4000,
                              batchsize_eval = 2720,
                              batchsize = 2720,
                              lr = 0.001,
                              vvgpu = [[2]],
                              repeat_dataset = True,
                              i64_input_key = True)

reader = hugectr.DataReaderParams(data_reader_type = hugectr.DataReaderType_t.Parquet,
                                  source = ["/wdl_train/train/_file_list.txt"],
                                  eval_source = "/wdl_train/val/_file_list.txt",
                                  check_type = hugectr.Check_t.Non,
                                  slot_size_array = [249058, 19561, 14212, 6890, 18592, 4, 6356, 1254, 52, 226170, 80508, 72308, 11, 2169, 7597, 61, 4, 923, 15, 249619, 168974, 243480, 68212, 9169, 75, 34, 278018, 415262])
optimizer = hugectr.CreateOptimizer(optimizer_type = hugectr.Optimizer_t.Adam,
                                    update_type = hugectr.Update_t.Global,
                                    beta1 = 0.9,
                                    beta2 = 0.999,
                                    epsilon = 0.0000001)
model = hugectr.Model(solver, reader, optimizer)

model.add(hugectr.Input(label_dim = 1, label_name = "label",
                        dense_dim = 13, dense_name = "dense",
                        data_reader_sparse_param_array = 
                        [hugectr.DataReaderSparseParam("wide_data", 1, True, 2),
                        hugectr.DataReaderSparseParam("deep_data", 2, False, 26)]))

model.add(hugectr.SparseEmbedding(embedding_type = hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash, 
                            workspace_size_per_gpu_in_mb = 24,
                            embedding_vec_size = 1,
                            combiner = "sum",
                            sparse_embedding_name = "sparse_embedding2",
                            bottom_name = "wide_data",
                            optimizer = optimizer))
model.add(hugectr.SparseEmbedding(embedding_type = hugectr.Embedding_t.DistributedSlotSparseEmbeddingHash, 
                            workspace_size_per_gpu_in_mb = 405,
                            embedding_vec_size = 16,
                            combiner = "sum",
                            sparse_embedding_name = "sparse_embedding1",
                            bottom_name = "deep_data",
                            optimizer = optimizer))

model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Reshape,
                            bottom_names = ["sparse_embedding1"],
                            top_names = ["reshape1"],
                            leading_dim=416))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Reshape,
                            bottom_names = ["sparse_embedding2"],
                            top_names = ["reshape2"],
                            leading_dim=2))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReduceSum,
                            bottom_names = ["reshape2"],
                            top_names = ["wide_redn"],
                            axis = 1))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Concat,
                            bottom_names = ["reshape1", "dense"],
                            top_names = ["concat1"]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct,
                            bottom_names = ["concat1"],
                            top_names = ["fc1"],
                            num_output=1024))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReLU,
                            bottom_names = ["fc1"],
                            top_names = ["relu1"]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Dropout,
                            bottom_names = ["relu1"],
                            top_names = ["dropout1"],
                            dropout_rate=0.5))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct,
                            bottom_names = ["dropout1"],
                            top_names = ["fc2"],
                            num_output=1024))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.ReLU,
                            bottom_names = ["fc2"],
                            top_names = ["relu2"]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Dropout,
                            bottom_names = ["relu2"],
                            top_names = ["dropout2"],
                            dropout_rate=0.5))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.InnerProduct,
                            bottom_names = ["dropout2"],
                            top_names = ["fc3"],
                            num_output=1))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.Add,
                            bottom_names = ["fc3", "wide_redn"],
                            top_names = ["add1"]))
model.add(hugectr.DenseLayer(layer_type = hugectr.Layer_t.BinaryCrossEntropyLoss,
                            bottom_names = ["add1", "label"],
                            top_names = ["loss"]))
model.compile()
model.summary()
model.fit(max_iter = 21000, display = 1000, eval_interval = 4000, snapshot = 20000, snapshot_prefix = "wdl")
model.graph_to_json(graph_config_file = "wdl.json")
Overwriting ./model.py
!python ./model.py
HugeCTR Version: 4.2
====================================================Model Init=====================================================
[HCTR][10:35:38.637][WARNING][RK0][main]: The model name is not specified when creating the solver.
[HCTR][10:35:38.637][INFO][RK0][main]: Global seed is 1886280762
[HCTR][10:35:38.640][INFO][RK0][main]: Device to NUMA mapping:
  GPU 2 ->  node 0
[HCTR][10:35:40.821][WARNING][RK0][main]: Peer-to-peer access cannot be fully enabled.
[HCTR][10:35:40.821][DEBUG][RK0][main]: [device 2] allocating 0.0000 GB, available 30.8035 
[HCTR][10:35:40.821][INFO][RK0][main]: Start all2all warmup
[HCTR][10:35:40.821][INFO][RK0][main]: End all2all warmup
[HCTR][10:35:40.822][INFO][RK0][main]: Using All-reduce algorithm: NCCL
[HCTR][10:35:40.823][INFO][RK0][main]: Device 2: Tesla V100-SXM2-32GB
[HCTR][10:35:40.824][INFO][RK0][main]: num of DataReader workers for train: 1
[HCTR][10:35:40.824][INFO][RK0][main]: num of DataReader workers for eval: 1
[HCTR][10:35:40.824][DEBUG][RK0][main]: [device 2] allocating 0.0054 GB, available 30.5476 
[HCTR][10:35:40.825][DEBUG][RK0][main]: [device 2] allocating 0.0054 GB, available 30.5417 
[HCTR][10:35:40.825][DEBUG][RK0][main]: [device 2] allocating 0.0000 GB, available 30.5417 
[HCTR][10:35:40.826][DEBUG][RK0][main]: [device 2] allocating 0.0000 GB, available 30.5417 
[HCTR][10:35:40.826][INFO][RK0][main]: Vocabulary size: 2138588
[HCTR][10:35:40.826][INFO][RK0][main]: max_vocabulary_size_per_gpu_=2097152
[HCTR][10:35:40.838][DEBUG][RK0][main]: [device 2] allocating 0.0241 GB, available 30.3914 
[HCTR][10:35:40.845][INFO][RK0][main]: max_vocabulary_size_per_gpu_=2211840
[HCTR][10:35:40.851][DEBUG][RK0][main]: [device 2] allocating 0.4288 GB, available 29.9617 
[HCTR][10:35:40.851][INFO][RK0][main]: Graph analysis to resolve tensor dependency
===================================================Model Compile===================================================
[HCTR][10:35:40.856][DEBUG][RK0][main]: [device 2] allocating 0.2162 GB, available 29.4792 
[HCTR][10:35:40.856][DEBUG][RK0][main]: [device 2] allocating 0.0056 GB, available 29.4734 
[HCTR][10:35:50.016][INFO][RK0][main]: gpu0 start to init embedding
[HCTR][10:35:50.016][INFO][RK0][main]: gpu0 init embedding done
[HCTR][10:35:50.016][INFO][RK0][main]: gpu0 start to init embedding
[HCTR][10:35:50.017][INFO][RK0][main]: gpu0 init embedding done
[HCTR][10:35:50.017][DEBUG][RK0][main]: [device 2] allocating 0.0001 GB, available 29.4734 
[HCTR][10:35:50.019][INFO][RK0][main]: Starting AUC NCCL warm-up
[HCTR][10:35:50.023][INFO][RK0][main]: Warm-up done
===================================================Model Summary===================================================
[HCTR][10:35:50.023][INFO][RK0][main]: Model structure on each GPU
Label                                   Dense                         Sparse                        
label                                   dense                          wide_data,deep_data           
(2720,1)                                (2720,13)                               
——————————————————————————————————————————————————————————————————————————————————————————————————————————————————
Layer Type                              Input Name                    Output Name                   Output Shape                  
——————————————————————————————————————————————————————————————————————————————————————————————————————————————————
DistributedSlotSparseEmbeddingHash      wide_data                     sparse_embedding2             (2720,2,1)                    
------------------------------------------------------------------------------------------------------------------
DistributedSlotSparseEmbeddingHash      deep_data                     sparse_embedding1             (2720,26,16)                  
------------------------------------------------------------------------------------------------------------------
Reshape                                 sparse_embedding1             reshape1                      (2720,416)                    
------------------------------------------------------------------------------------------------------------------
Reshape                                 sparse_embedding2             reshape2                      (2720,2)                      
------------------------------------------------------------------------------------------------------------------
ReduceSum                               reshape2                      wide_redn                     (2720,1)                      
------------------------------------------------------------------------------------------------------------------
Concat                                  reshape1                      concat1                       (2720,429)                    
                                        dense                                                                                     
------------------------------------------------------------------------------------------------------------------
InnerProduct                            concat1                       fc1                           (2720,1024)                   
------------------------------------------------------------------------------------------------------------------
ReLU                                    fc1                           relu1                         (2720,1024)                   
------------------------------------------------------------------------------------------------------------------
Dropout                                 relu1                         dropout1                      (2720,1024)                   
------------------------------------------------------------------------------------------------------------------
InnerProduct                            dropout1                      fc2                           (2720,1024)                   
------------------------------------------------------------------------------------------------------------------
ReLU                                    fc2                           relu2                         (2720,1024)                   
------------------------------------------------------------------------------------------------------------------
Dropout                                 relu2                         dropout2                      (2720,1024)                   
------------------------------------------------------------------------------------------------------------------
InnerProduct                            dropout2                      fc3                           (2720,1)                      
------------------------------------------------------------------------------------------------------------------
Add                                     fc3                           add1                          (2720,1)                      
                                        wide_redn                                                                                 
------------------------------------------------------------------------------------------------------------------
BinaryCrossEntropyLoss                  add1                          loss                                                        
                                        label                                                                                     
------------------------------------------------------------------------------------------------------------------
=====================================================Model Fit=====================================================
[HCTR][10:35:50.024][INFO][RK0][main]: Use non-epoch mode with number of iterations: 21000
[HCTR][10:35:50.024][INFO][RK0][main]: Training batchsize: 2720, evaluation batchsize: 2720
[HCTR][10:35:50.024][INFO][RK0][main]: Evaluation interval: 4000, snapshot interval: 20000
[HCTR][10:35:50.024][INFO][RK0][main]: Dense network trainable: True
[HCTR][10:35:50.024][INFO][RK0][main]: Sparse embedding sparse_embedding1 trainable: True
[HCTR][10:35:50.024][INFO][RK0][main]: Sparse embedding sparse_embedding2 trainable: True
[HCTR][10:35:50.024][INFO][RK0][main]: Use mixed precision: False, scaler: 1.000000, use cuda graph: True
[HCTR][10:35:50.024][INFO][RK0][main]: lr: 0.001000, warmup_steps: 1, end_lr: 0.000000
[HCTR][10:35:50.024][INFO][RK0][main]: decay_start: 0, decay_steps: 1, decay_power: 2.000000
[HCTR][10:35:50.024][INFO][RK0][main]: Training source file: /wdl_train/train/_file_list.txt
[HCTR][10:35:50.024][INFO][RK0][main]: Evaluation source file: /wdl_train/val/_file_list.txt
[HCTR][10:35:55.354][INFO][RK0][main]: Iter: 1000 Time(1000 iters): 5.32919s Loss: 0.117964 lr:0.001
[HCTR][10:36:00.665][INFO][RK0][main]: Iter: 2000 Time(1000 iters): 5.30907s Loss: 0.126084 lr:0.001
[HCTR][10:36:06.002][INFO][RK0][main]: Iter: 3000 Time(1000 iters): 5.33581s Loss: 0.138335 lr:0.001
[HCTR][10:36:11.349][INFO][RK0][main]: Iter: 4000 Time(1000 iters): 5.34525s Loss: 0.101962 lr:0.001
[HCTR][10:36:15.933][INFO][RK0][main]: Evaluation, AUC: 0.763947
[HCTR][10:36:15.933][INFO][RK0][main]: Eval Time for 4000 iters: 4.583s
[HCTR][10:36:21.258][INFO][RK0][main]: Iter: 5000 Time(1000 iters): 9.90761s Loss: 0.120185 lr:0.001
[HCTR][10:36:26.620][INFO][RK0][main]: Iter: 6000 Time(1000 iters): 5.35972s Loss: 0.128626 lr:0.001
[HCTR][10:36:31.947][INFO][RK0][main]: Iter: 7000 Time(1000 iters): 5.32628s Loss: 0.125264 lr:0.001
[HCTR][10:36:37.320][INFO][RK0][main]: Iter: 8000 Time(1000 iters): 5.37131s Loss: 0.121486 lr:0.001
[HCTR][10:36:41.803][INFO][RK0][main]: Evaluation, AUC: 0.767916
[HCTR][10:36:41.803][INFO][RK0][main]: Eval Time for 4000 iters: 4.48175s
[HCTR][10:36:47.154][INFO][RK0][main]: Iter: 9000 Time(1000 iters): 9.83223s Loss: 0.109454 lr:0.001
[HCTR][10:36:52.522][INFO][RK0][main]: Iter: 10000 Time(1000 iters): 5.36677s Loss: 0.149472 lr:0.001
[HCTR][10:36:57.896][INFO][RK0][main]: Iter: 11000 Time(1000 iters): 5.37183s Loss: 0.118341 lr:0.001
[HCTR][10:37:03.264][INFO][RK0][main]: Iter: 12000 Time(1000 iters): 5.36706s Loss: 0.128496 lr:0.001
[HCTR][10:37:07.728][INFO][RK0][main]: Evaluation, AUC: 0.769081
[HCTR][10:37:07.728][INFO][RK0][main]: Eval Time for 4000 iters: 4.46314s
[HCTR][10:37:13.098][INFO][RK0][main]: Iter: 13000 Time(1000 iters): 9.83154s Loss: 0.118482 lr:0.001
[HCTR][10:37:18.447][INFO][RK0][main]: Iter: 14000 Time(1000 iters): 5.34802s Loss: 0.122699 lr:0.001
[HCTR][10:37:23.812][INFO][RK0][main]: Iter: 15000 Time(1000 iters): 5.36294s Loss: 0.118947 lr:0.001
[HCTR][10:37:29.176][INFO][RK0][main]: Iter: 16000 Time(1000 iters): 5.36303s Loss: 0.112516 lr:0.001
[HCTR][10:37:33.646][INFO][RK0][main]: Evaluation, AUC: 0.772322
[HCTR][10:37:33.646][INFO][RK0][main]: Eval Time for 4000 iters: 4.46896s
[HCTR][10:37:39.146][INFO][RK0][main]: Iter: 17000 Time(1000 iters): 9.96806s Loss: 0.11619 lr:0.001
[HCTR][10:37:44.517][INFO][RK0][main]: Iter: 18000 Time(1000 iters): 5.37011s Loss: 0.113035 lr:0.001
[HCTR][10:37:49.891][INFO][RK0][main]: Iter: 19000 Time(1000 iters): 5.37157s Loss: 0.116589 lr:0.001
[HCTR][10:37:55.236][INFO][RK0][main]: Iter: 20000 Time(1000 iters): 5.34424s Loss: 0.127488 lr:0.001
[HCTR][10:37:59.698][INFO][RK0][main]: Evaluation, AUC: 0.768523
[HCTR][10:37:59.698][INFO][RK0][main]: Eval Time for 4000 iters: 4.46044s
[HCTR][10:37:59.698][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:37:59.771][INFO][RK0][main]: Rank0: Write hash table to file
[HCTR][10:37:59.810][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:37:59.867][INFO][RK0][main]: Rank0: Write hash table to file
[HCTR][10:38:00.091][INFO][RK0][main]: Dumping sparse weights to files, successful
[HCTR][10:38:00.092][INFO][RK0][main]: Rank0: Write optimzer state to file
[HCTR][10:38:00.092][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:38:00.115][INFO][RK0][main]: Done
[HCTR][10:38:00.116][INFO][RK0][main]: Rank0: Write optimzer state to file
[HCTR][10:38:00.116][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:38:00.140][INFO][RK0][main]: Done
[HCTR][10:38:00.245][INFO][RK0][main]: Rank0: Write optimzer state to file
[HCTR][10:38:00.245][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:38:00.610][INFO][RK0][main]: Done
[HCTR][10:38:00.695][INFO][RK0][main]: Rank0: Write optimzer state to file
[HCTR][10:38:00.695][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:38:01.057][INFO][RK0][main]: Done
[HCTR][10:38:01.063][INFO][RK0][main]: Dumping sparse optimzer states to files, successful
[HCTR][10:38:01.064][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:38:01.079][INFO][RK0][main]: Dumping dense weights to file, successful
[HCTR][10:38:01.081][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:38:01.116][INFO][RK0][main]: Dumping dense optimizer states to file, successful
[HCTR][10:38:06.487][INFO][RK0][main]: Finish 21000 iterations with batchsize: 2720 in 136.46s.
[HCTR][10:38:06.488][INFO][RK0][main]: Save the model graph to wdl.json successfully
[1676025486.656545] [dgx1v-loki-23:602  :0] cuda_copy_iface.c:468  UCX  ERROR cuCtxGetCurrent(&cuda_context)() failed: p�
[1676025486.656590] [dgx1v-loki-23:602  :0]  cuda_ipc_iface.c:531  UCX  ERROR cuCtxGetCurrent(&cuda_context)() failed: 
[HCTR][10:38:06.707][INFO][RK0][main]: MPI finalization done.

Prepare Inference Request

!ls -l /wdl_train/val
total 633080
-rw-r--r-- 1 root root        32 Feb 10 10:34 _file_list.txt
-rw-r--r-- 1 root root     21894 Feb 10 10:34 _metadata
-rw-r--r-- 1 root root      1509 Feb 10 10:34 _metadata.json
-rw-r--r-- 1 root root 138441430 Feb 10 10:34 part_0.parquet
-rw-r--r-- 1 root root     27296 Feb 10 10:34 schema.pbtxt
drwxr-xr-x 2 root root        50 Feb 10 10:32 temp-parquet-after-conversion
-rw-r--r-- 1 root root 509766965 Feb 10 10:32 test.txt
import pandas as pd
df = pd.read_parquet("/wdl_train/val/part_0.parquet")

df.head()
I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 ... C17 C18 C19 C20 C21 C22 C23 C24 C25 C26
0 -0.054112 -0.267624 0.371471 -0.076760 -0.131771 -0.206385 -0.064249 -0.208772 0.324461 -0.470383 ... 1 49 1 3 3 3 9 402 1 4
1 -0.048792 -0.547466 -0.594327 -0.157301 -0.224758 -0.206385 -0.064249 0.949396 -0.760031 -0.470383 ... 3 2 1 0 1645 0 1358 1232 1 1
2 -0.059432 -0.516221 -0.594327 -0.115539 -0.209261 -0.206385 -0.064249 -0.281810 -0.687732 -0.470383 ... 0 1 1 33190 32473 34242 0 954 3 3
3 -0.029284 -0.548824 -0.057773 -0.105099 -0.224758 -0.206385 -0.064249 -0.255725 -0.760031 -0.470383 ... 1 1 2 1 1 1 1 622 1 2
4 -0.061206 -0.548824 -0.594327 -0.145369 -0.209261 -0.206385 0.339399 -0.281810 0.035263 -0.470383 ... 0 1 1 90 143 101 0 21 1 3

5 rows × 42 columns

df.head(10).to_csv('/wdl_train/infer_test.csv', sep=',', index=False,header=True)

Create prediction scripts

%%writefile '/wdl_train/wdl_predict.py'
from hugectr.inference import InferenceParams, CreateInferenceSession
import hugectr
import pandas as pd
import numpy as np
import sys
from mpi4py import MPI
def wdl_inference(model_name, network_file, dense_file, embedding_file_list, data_file, enable_cache, use_rocksdb=False, rocksdb_path=None):
    CATEGORICAL_COLUMNS=["C" + str(x) for x in range(1, 27)]+["C1_C2","C3_C4"]
    CONTINUOUS_COLUMNS=["I" + str(x) for x in range(1, 14)]
    LABEL_COLUMNS = ['label']
    emb_size = [249058, 19561, 14212, 6890, 18592, 4, 6356, 1254, 52, 226170, 80508, 72308, 11, 2169, 7597, 61, 4, 923, 15, 249619, 168974, 243480, 68212, 9169, 75, 34, 278018, 415262]
    shift = np.insert(np.cumsum(emb_size), 0, 0)[:-1]
    test_df=pd.read_csv(data_file,sep=',')
    config_file = network_file
    row_ptrs = list(range(0,21))+list(range(0,261))
    dense_features =  list(test_df[CONTINUOUS_COLUMNS].values.flatten())
    test_df[CATEGORICAL_COLUMNS].astype(np.int64)
    embedding_columns = list((test_df[CATEGORICAL_COLUMNS]+shift).values.flatten())
    
    
    persistent_db_params = hugectr.inference.PersistentDatabaseParams()
    if use_rocksdb:
        persistent_db_params = hugectr.inference.PersistentDatabaseParams(
                                  backend = hugectr.DatabaseType_t.rocks_db,
                                  path = rocksdb_path
                                )
    

    # create parameter server, embedding cache and inference session
    inference_params = InferenceParams(model_name = model_name,
                                max_batchsize = 64,
                                hit_rate_threshold = 0.5,
                                dense_model_file = dense_file,
                                sparse_model_files = embedding_file_list,
                                device_id = 0,
                                use_gpu_embedding_cache = enable_cache,
                                cache_size_percentage = 0.9,
                                persistent_db = persistent_db_params,
                                i64_input_key = True,
                                use_mixed_precision = False)
    inference_session = CreateInferenceSession(config_file, inference_params)
    output = inference_session.predict(dense_features, embedding_columns, row_ptrs)
    print("WDL multi-embedding table inference result is {}".format(output))

if __name__ == "__main__":
    model_name = sys.argv[1]
    print("{} multi-embedding table prediction".format(model_name))
    network_file = sys.argv[2]
    print("{} multi-embedding table prediction network is {}".format(model_name,network_file))
    dense_file = sys.argv[3]
    print("{} multi-embedding table prediction dense file is {}".format(model_name,dense_file))
    embedding_file_list = str(sys.argv[4]).split(',')
    print("{} multi-embedding table prediction sparse files are {}".format(model_name,embedding_file_list))
    data_file = sys.argv[5]
    print("{} multi-embedding table prediction input data path is {}".format(model_name,data_file))
    input_dbtype = sys.argv[6]
    print("{} multi-embedding table prediction input dbtype path is {}".format(model_name,input_dbtype))
    if input_dbtype=="disabled":
        wdl_inference(model_name, network_file, dense_file, embedding_file_list, data_file, True)
    if input_dbtype=="rocksdb":
        rocksdb_path = sys.argv[7]
        print("{} multi-embedding table prediction rocksdb_path path is {}".format(model_name,rocksdb_path))
        wdl_inference(model_name, network_file, dense_file, embedding_file_list, data_file, True, True, rocksdb_path)
Overwriting /wdl_train/wdl_predict.py

Prediction

Use different types of databases as a local parameter server to get the wide and deep model prediction results.

Load model embedding tables into local memory as parameter server

!python /wdl_train/wdl_predict.py "wdl" "./wdl.json" "./wdl_dense_20000.model" "./wdl0_sparse_20000.model/,./wdl1_sparse_20000.model" "/wdl_train/infer_test.csv" "disabled"
wdl multi-embedding table prediction
wdl multi-embedding table prediction network is ./wdl.json
wdl multi-embedding table prediction dense file is ./wdl_dense_20000.model
wdl multi-embedding table prediction sparse files are ['./wdl0_sparse_20000.model/', './wdl1_sparse_20000.model']
wdl multi-embedding table prediction input data path is /wdl_train/infer_test.csv
wdl multi-embedding table prediction input dbtype path is disabled
[HCTR][10:53:44.990][WARNING][RK0][main]: default_value_for_each_table.size() is not equal to the number of embedding tables
[HCTR][10:53:44.990][INFO][RK0][main]: default_emb_vec_value is not specified using default: 0
[HCTR][10:53:44.990][INFO][RK0][main]: default_emb_vec_value is not specified using default: 0
====================================================HPS Create====================================================
[HCTR][10:53:44.990][INFO][RK0][main]: Creating HashMap CPU database backend...
[HCTR][10:53:44.991][DEBUG][RK0][main]: Created blank database backend in local memory!
[HCTR][10:53:44.991][INFO][RK0][main]: Volatile DB: initial cache rate = 1
[HCTR][10:53:44.991][INFO][RK0][main]: Volatile DB: cache missed embeddings = 0
[HCTR][10:53:44.991][DEBUG][RK0][main]: Created raw model loader in local memory!
[HCTR][10:53:44.991][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:53:45.479][INFO][RK0][main]: Table: hps_et.wdl.sparse_embedding2; cached 664320 / 664320 embeddings in volatile database (HashMapBackend); load: 664320 / 18446744073709551615 (0.00%).
[HCTR][10:53:45.479][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:53:45.829][INFO][RK0][main]: Table: hps_et.wdl.sparse_embedding1; cached 1030499 / 1030499 embeddings in volatile database (HashMapBackend); load: 1030499 / 18446744073709551615 (0.00%).
[HCTR][10:53:45.836][DEBUG][RK0][main]: Real-time subscribers created!
[HCTR][10:53:45.836][INFO][RK0][main]: Creating embedding cache in device 0.
[HCTR][10:53:45.842][INFO][RK0][main]: Model name: wdl
[HCTR][10:53:45.842][INFO][RK0][main]: Max batch size: 64
[HCTR][10:53:45.842][INFO][RK0][main]: Number of embedding tables: 2
[HCTR][10:53:45.842][INFO][RK0][main]: Use GPU embedding cache: True, cache size percentage: 0.900000
[HCTR][10:53:45.842][INFO][RK0][main]: Use static table: False
[HCTR][10:53:45.842][INFO][RK0][main]: Use I64 input key: True
[HCTR][10:53:45.842][INFO][RK0][main]: Configured cache hit rate threshold: 0.500000
[HCTR][10:53:45.842][INFO][RK0][main]: The size of thread pool: 80
[HCTR][10:53:45.842][INFO][RK0][main]: The size of worker memory pool: 2
[HCTR][10:53:45.842][INFO][RK0][main]: The size of refresh memory pool: 1
[HCTR][10:53:45.842][INFO][RK0][main]: The refresh percentage : 0.000000
[HCTR][10:53:46.786][INFO][RK0][main]: Global seed is 1984285016
[HCTR][10:53:46.789][INFO][RK0][main]: Device to NUMA mapping:
  GPU 0 ->  node 0
[HCTR][10:53:47.797][WARNING][RK0][main]: Peer-to-peer access cannot be fully enabled.
[HCTR][10:53:47.797][DEBUG][RK0][main]: [device 0] allocating 0.0000 GB, available 30.7156 
[HCTR][10:53:47.797][INFO][RK0][main]: Start all2all warmup
[HCTR][10:53:47.797][INFO][RK0][main]: End all2all warmup
[HCTR][10:53:47.798][INFO][RK0][main]: Model name: wdl
[HCTR][10:53:47.798][INFO][RK0][main]: Use mixed precision: False
[HCTR][10:53:47.798][INFO][RK0][main]: Use cuda graph: True
[HCTR][10:53:47.798][INFO][RK0][main]: Max batchsize: 64
[HCTR][10:53:47.798][INFO][RK0][main]: Use I64 input key: True
[HCTR][10:53:47.798][INFO][RK0][main]: start create embedding for inference
[HCTR][10:53:47.798][INFO][RK0][main]: sparse_input name wide_data
[HCTR][10:53:47.798][INFO][RK0][main]: sparse_input name deep_data
[HCTR][10:53:47.798][INFO][RK0][main]: create embedding for inference success
[HCTR][10:53:47.798][DEBUG][RK0][main]: [device 0] allocating 0.0003 GB, available 30.4636 
[HCTR][10:53:47.799][INFO][RK0][main]: Inference stage skip BinaryCrossEntropyLoss layer, replaced by Sigmoid layer
[HCTR][10:53:47.799][DEBUG][RK0][main]: [device 0] allocating 0.0128 GB, available 30.4421 
WDL multi-embedding table inference result is [0.011136045679450035, 0.006747737061232328, 0.005509266164153814, 0.0118627417832613, 0.01798960007727146, 0.010030664503574371, 0.02108118124306202, 0.008684462867677212, 0.07753805071115494, 0.011398322880268097]

Load model embedding tables into local RocksDB as a parameter Server

Create a RocksDB directory with read and write permissions for storing model embedded tables.

!mkdir -p -m 700 /wdl_train/rocksdb
!python /wdl_train/wdl_predict.py "wdl" "./wdl.json" \
"./wdl_dense_20000.model" \
"./wdl0_sparse_20000.model/,./wdl1_sparse_20000.model" \
"/wdl_train/infer_test.csv" \
"rocksdb"  "/wdl_train/rocksdb"
wdl multi-embedding table prediction
wdl multi-embedding table prediction network is ./wdl.json
wdl multi-embedding table prediction dense file is ./wdl_dense_20000.model
wdl multi-embedding table prediction sparse files are ['./wdl0_sparse_20000.model/', './wdl1_sparse_20000.model']
wdl multi-embedding table prediction input data path is /wdl_train/infer_test.csv
wdl multi-embedding table prediction input dbtype path is rocksdb
wdl multi-embedding table prediction rocksdb_path path is /wdl_train/rocksdb
[HCTR][10:56:41.546][WARNING][RK0][main]: default_value_for_each_table.size() is not equal to the number of embedding tables
[HCTR][10:56:41.546][INFO][RK0][main]: default_emb_vec_value is not specified using default: 0
[HCTR][10:56:41.546][INFO][RK0][main]: default_emb_vec_value is not specified using default: 0
====================================================HPS Create====================================================
[HCTR][10:56:41.546][INFO][RK0][main]: Creating HashMap CPU database backend...
[HCTR][10:56:41.547][DEBUG][RK0][main]: Created blank database backend in local memory!
[HCTR][10:56:41.547][INFO][RK0][main]: Volatile DB: initial cache rate = 1
[HCTR][10:56:41.547][INFO][RK0][main]: Volatile DB: cache missed embeddings = 0
[HCTR][10:56:41.547][INFO][RK0][main]: Creating RocksDB backend...
[HCTR][10:56:41.547][INFO][RK0][main]: Connecting to RocksDB database...
[HCTR][10:56:41.548][ERROR][RK0][main]: RocksDB /wdl_train/rocksdb: Listing column names failed!
[HCTR][10:56:41.548][INFO][RK0][main]: RocksDB /wdl_train/rocksdb, found column family "default".
[HCTR][10:56:41.583][INFO][RK0][main]: Connected to RocksDB database!
[HCTR][10:56:41.583][DEBUG][RK0][main]: Created raw model loader in local memory!
[HCTR][10:56:41.583][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:56:42.084][INFO][RK0][main]: Table: hps_et.wdl.sparse_embedding2; cached 664320 / 664320 embeddings in volatile database (HashMapBackend); load: 664320 / 18446744073709551615 (0.00%).
[HCTR][10:56:43.351][INFO][RK0][main]: Table: hps_et.wdl.sparse_embedding2; cached 664320 embeddings in persistent database (RocksDB).
[HCTR][10:56:43.351][INFO][RK0][main]: Using Local file system backend.
[HCTR][10:56:43.693][INFO][RK0][main]: Table: hps_et.wdl.sparse_embedding1; cached 1030499 / 1030499 embeddings in volatile database (HashMapBackend); load: 1030499 / 18446744073709551615 (0.00%).
[HCTR][10:56:45.979][INFO][RK0][main]: Table: hps_et.wdl.sparse_embedding1; cached 1030499 embeddings in persistent database (RocksDB).
[HCTR][10:56:45.985][DEBUG][RK0][main]: Real-time subscribers created!
[HCTR][10:56:45.985][INFO][RK0][main]: Creating embedding cache in device 0.
[HCTR][10:56:45.991][INFO][RK0][main]: Model name: wdl
[HCTR][10:56:45.991][INFO][RK0][main]: Max batch size: 64
[HCTR][10:56:45.991][INFO][RK0][main]: Number of embedding tables: 2
[HCTR][10:56:45.991][INFO][RK0][main]: Use GPU embedding cache: True, cache size percentage: 0.900000
[HCTR][10:56:45.991][INFO][RK0][main]: Use static table: False
[HCTR][10:56:45.991][INFO][RK0][main]: Use I64 input key: True
[HCTR][10:56:45.991][INFO][RK0][main]: Configured cache hit rate threshold: 0.500000
[HCTR][10:56:45.991][INFO][RK0][main]: The size of thread pool: 80
[HCTR][10:56:45.991][INFO][RK0][main]: The size of worker memory pool: 2
[HCTR][10:56:45.991][INFO][RK0][main]: The size of refresh memory pool: 1
[HCTR][10:56:45.991][INFO][RK0][main]: The refresh percentage : 0.000000
[HCTR][10:56:46.953][INFO][RK0][main]: Global seed is 3196997041
[HCTR][10:56:46.956][INFO][RK0][main]: Device to NUMA mapping:
  GPU 0 ->  node 0
[HCTR][10:56:48.005][WARNING][RK0][main]: Peer-to-peer access cannot be fully enabled.
[HCTR][10:56:48.005][DEBUG][RK0][main]: [device 0] allocating 0.0000 GB, available 30.7156 
[HCTR][10:56:48.005][INFO][RK0][main]: Start all2all warmup
[HCTR][10:56:48.005][INFO][RK0][main]: End all2all warmup
[HCTR][10:56:48.006][INFO][RK0][main]: Model name: wdl
[HCTR][10:56:48.006][INFO][RK0][main]: Use mixed precision: False
[HCTR][10:56:48.006][INFO][RK0][main]: Use cuda graph: True
[HCTR][10:56:48.006][INFO][RK0][main]: Max batchsize: 64
[HCTR][10:56:48.006][INFO][RK0][main]: Use I64 input key: True
[HCTR][10:56:48.006][INFO][RK0][main]: start create embedding for inference
[HCTR][10:56:48.006][INFO][RK0][main]: sparse_input name wide_data
[HCTR][10:56:48.006][INFO][RK0][main]: sparse_input name deep_data
[HCTR][10:56:48.006][INFO][RK0][main]: create embedding for inference success
[HCTR][10:56:48.006][DEBUG][RK0][main]: [device 0] allocating 0.0003 GB, available 30.4636 
[HCTR][10:56:48.007][INFO][RK0][main]: Inference stage skip BinaryCrossEntropyLoss layer, replaced by Sigmoid layer
[HCTR][10:56:48.007][DEBUG][RK0][main]: [device 0] allocating 0.0128 GB, available 30.4421 
WDL multi-embedding table inference result is [0.011136045679450035, 0.006747737061232328, 0.005509266164153814, 0.0118627417832613, 0.01798960007727146, 0.010030664503574371, 0.02108118124306202, 0.008684462867677212, 0.07753805071115494, 0.011398322880268097]
[HCTR][10:56:48.571][INFO][RK0][main]: Disconnecting from RocksDB database...
[HCTR][10:56:48.573][INFO][RK0][main]: Disconnected from RocksDB database!