nvtabular.ops.DropLowCardinality#
- class nvtabular.ops.DropLowCardinality(min_cardinality=4)[source]#
- Bases: - Operator- DropLowCardinality drops low cardinality categorical columns. This requires the cardinality of these columns to be known in the schema - for instance by first encoding these columns using Categorify. - Methods - __init__([min_cardinality])- column_mapping(col_selector)- Compute which output columns depend on which input columns - compute_column_schema(col_name, input_schema)- compute_input_schema(root_schema, ...)- Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use - compute_output_schema(input_schema, col_selector)- Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce - compute_selector(input_schema, selector, ...)- Checks the cardinality of the input columns and drops any categorical columns with cardinality less than the specified minimum. - create_node(selector)- export(path, input_schema, output_schema, ...)- Export the class object as a config and all related files to the user defined path. - load_artifacts([artifact_path])- Load artifacts from disk required for operator function. - output_column_names(col_selector)- Given a set of columns names returns the names of the transformed columns this operator will produce - save_artifacts([artifact_path])- Save artifacts required to be reload operator state from disk - transform(col_selector, df)- Selects all non-categorical columns and any categorical columns of at least the minimum cardinality from the dataframe. - validate_schemas(parents_schema, ...[, ...])- Provides a hook method that sub-classes can override to implement schema validation logic. - Attributes - dependencies- Defines an optional list of column dependencies for this operator. - dynamic_dtypes- export_name- Provides a clear common english identifier for this operator. - is_subgraph- label- output_dtype- output_properties- output_tags- supported_formats- supports- Returns what kind of data representation this operator supports - transform(col_selector: ColumnSelector, df: DataFrame) DataFrame[source]#
- Selects all non-categorical columns and any categorical columns of at least the minimum cardinality from the dataframe. - Parameters:
- col_selector (ColumnSelector) – The columns to select. 
- df (DataFrameType) – The dataframe to transform 
 
- Returns:
- Dataframe with only the selected columns. 
- Return type:
- DataFrameType 
 
 - compute_selector(input_schema: Schema, selector: ColumnSelector, parents_selector: ColumnSelector, dependencies_selector: ColumnSelector) ColumnSelector[source]#
- Checks the cardinality of the input columns and drops any categorical columns with cardinality less than the specified minimum. - Parameters:
- input_schema (Schema) – The current node’s input schema 
- selector (ColumnSelector) – The current node’s selector 
- parents_selector (ColumnSelector) – A selector for the output columns of the current node’s parents 
- dependencies_selector (ColumnSelector) – A selector for the output columns of the current node’s dependencies 
 
- Returns:
- Selector that contains all non-categorical columns and any categorical columns of at least the minimum cardinality. 
- Return type:
- ColumnSelector