nvtabular.ops.ValueCount#
- class nvtabular.ops.ValueCount[source]#
Bases:
StatOperatorThe operator calculates the min and max lengths of multihot columns.
Methods
__init__()clear()column_mapping(col_selector)Compute which output columns depend on which input columns
compute_column_schema(col_name, input_schema)compute_input_schema(root_schema, ...)Given the schemas coming from upstream sources and a column selector for the input columns, returns a set of schemas for the input columns this operator will use
compute_output_schema(input_schema, col_selector)Given a set of schemas and a column selector for the input columns, returns a set of schemas for the transformed columns this operator will produce
compute_selector(input_schema, selector[, ...])Provides a hook method for sub-classes to override to implement custom column selection logic.
create_node(selector)export(path, input_schema, output_schema, ...)Export the class object as a config and all related files to the user defined path.
fit(col_selector, ddf)fit_finalize(dask_stats)load_artifacts([artifact_path])Load artifacts from disk required for operator function.
output_column_names(col_selector)Given a set of columns names returns the names of the transformed columns this operator will produce
save_artifacts([artifact_path])Save artifacts required to be reload operator state from disk
set_storage_path(new_path[, copy])Certain stat operators need external storage - for instance Categorify writes out parquet files containing the categorical mapping.
transform(col_selector, df)validate_schemas(parents_schema, ...[, ...])Provides a hook method that sub-classes can override to implement schema validation logic.
Attributes
dependenciesDefines an optional list of column dependencies for this operator.
dynamic_dtypesexport_nameProvides a clear common english identifier for this operator.
fittedis_subgraphlabeloutput_dtypeoutput_propertiesoutput_tagssupported_formatssupportsReturns what kind of data representation this operator supports
- fit(col_selector: ColumnSelector, ddf: DataFrame) Any[source]#
- transform(col_selector: ColumnSelector, df: DataFrame) DataFrame[source]#