Source code for nvtabular.ops.rename

#
# Copyright (c) 2021, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from nvtabular.columns import Schema

from ..dispatch import DataFrameType
from .operator import ColumnSelector, Operator


[docs]class Rename(Operator): """This operation renames columns by one of several methods: - using a user defined lambda function to transform column names - appending a postfix string to every column name - renaming a single column to a single fixed string Example usage:: # Rename columns after LogOp cont_features = cont_names >> nvt.ops.LogOp() >> Rename(postfix='_log') processor = nvt.Workflow(cont_features) Parameters ---------- f : callable, optional Function that takes a column name and returns a new column name postfix : str, optional If set each column name in the output will have this string appended to it name : str, optional If set, a single input column will be renamed to this string """ def __init__(self, f=None, postfix=None, name=None): if not f and postfix is None and name is None: raise ValueError("must specify name, f, or postfix, for Rename op") self.f = f self.postfix = postfix self.name = name
[docs] def transform(self, col_selector: ColumnSelector, df: DataFrameType) -> DataFrameType: df = df[col_selector.names] df.columns = self.output_column_names(col_selector).names return df
transform.__doc__ = Operator.transform.__doc__
[docs] def compute_output_schema(self, input_schema: Schema, col_selector: ColumnSelector) -> Schema: if not col_selector: col_selector = ColumnSelector(input_schema.column_names) if col_selector.tags: tags_col_selector = ColumnSelector(tags=col_selector.tags) filtered_schema = input_schema.apply(tags_col_selector) col_selector += ColumnSelector(filtered_schema.column_names) # zero tags because already filtered col_selector._tags = [] output_schema = Schema() for column_name in input_schema.column_schemas: new_names = self.output_column_names(ColumnSelector(column_name)) column_schema = input_schema.column_schemas[column_name] for new_name in new_names.names: new_column_schema = column_schema.with_name(new_name) output_schema += Schema([self.transformed_schema(new_column_schema)]) return output_schema
[docs] def output_column_names(self, col_selector): if self.f: return ColumnSelector([self.f(col) for col in col_selector.names]) elif self.postfix: return ColumnSelector([col + self.postfix for col in col_selector.names]) elif self.name: if len(col_selector.names) == 1: return ColumnSelector([self.name]) else: raise RuntimeError("Single column name provided for renaming multiple columns") else: raise RuntimeError("The Rename op requires one of f, postfix, or name to be provided")