transformers4rec.torch.tabular package
Submodules
transformers4rec.torch.tabular.aggregation module
-
class
transformers4rec.torch.tabular.aggregation.
ConcatFeatures
(*args, **kwargs)[source] Bases:
transformers4rec.torch.tabular.base.TabularAggregation
Aggregation by stacking all values in TabularData, all non-sequential values will be converted to a sequence.
The output of this concatenation will have 3 dimensions.
-
forward
(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
-
-
class
transformers4rec.torch.tabular.aggregation.
StackFeatures
(axis: int = - 1)[source] Bases:
transformers4rec.torch.tabular.base.TabularAggregation
Aggregation by stacking all values in input dictionary in the given dimension.
- Parameters
axis (int, default=-1) – Axis to use for the stacking operation.
-
forward
(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
-
class
transformers4rec.torch.tabular.aggregation.
ElementwiseFeatureAggregation
(*args, **kwargs)[source] Bases:
transformers4rec.torch.tabular.base.TabularAggregation
Base class for aggregation methods that aggregates features element-wise. It implements two check methods to ensure inputs have the correct shape.
-
class
transformers4rec.torch.tabular.aggregation.
ElementwiseSum
[source] Bases:
transformers4rec.torch.tabular.aggregation.ElementwiseFeatureAggregation
Aggregation by first stacking all values in TabularData in the first dimension, and then summing the result.
-
forward
(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
-
-
class
transformers4rec.torch.tabular.aggregation.
ElementwiseSumItemMulti
(schema: Optional[merlin_standard_lib.schema.schema.Schema] = None)[source] Bases:
transformers4rec.torch.tabular.aggregation.ElementwiseFeatureAggregation
Aggregation by applying the ElementwiseSum aggregation to all features except the item-id, and then multiplying this with the item-ids.
- Parameters
schema (DatasetSchema) –
-
forward
(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
-
REQUIRES_SCHEMA
= True
transformers4rec.torch.tabular.tabular module
transformers4rec.torch.tabular.transformations module
-
class
transformers4rec.torch.tabular.transformations.
StochasticSwapNoise
(schema=None, pad_token=0, replacement_prob=0.1)[source] Bases:
transformers4rec.torch.tabular.base.TabularTransformation
Applies Stochastic replacement of sequence features. It can be applied as a pre transform like TransformerBlock(pre=”stochastic-swap-noise”)
-
forward
(inputs: Union[torch.Tensor, Dict[str, torch.Tensor]], input_mask: Optional[torch.Tensor] = None, **kwargs) → Union[torch.Tensor, Dict[str, torch.Tensor]][source]
-
augment
(input_tensor: torch.Tensor, mask: Optional[torch.Tensor] = None) → torch.Tensor[source]
-
-
class
transformers4rec.torch.tabular.transformations.
TabularLayerNorm
(features_dim: Optional[Dict[str, int]] = None)[source] Bases:
transformers4rec.torch.tabular.base.TabularTransformation
Applies Layer norm to each input feature individually, before the aggregation
-
classmethod
from_feature_config
(feature_config: Dict[str, transformers4rec.torch.features.embedding.FeatureConfig])[source]
-
forward
(inputs: Dict[str, torch.Tensor], **kwargs) → Dict[str, torch.Tensor][source]
-
classmethod
-
class
transformers4rec.torch.tabular.transformations.
TabularDropout
(dropout_rate=0.0)[source] Bases:
transformers4rec.torch.tabular.base.TabularTransformation
Applies dropout transformation.
-
forward
(inputs: Union[torch.Tensor, Dict[str, torch.Tensor]], **kwargs) → Union[torch.Tensor, Dict[str, torch.Tensor]][source]
-