transformers4rec.torch.model package
Submodules
transformers4rec.torch.model.head module
transformers4rec.torch.model.model module
transformers4rec.torch.model.prediction_task module
-
class
transformers4rec.torch.model.prediction_task.
BinaryClassificationPrepareBlock
[source] Bases:
transformers4rec.torch.block.base.BuildableBlock
-
build
(input_size) → transformers4rec.torch.block.base.SequentialBlock[source]
-
-
class
transformers4rec.torch.model.prediction_task.
BinaryClassificationTask
(target_name: Optional[str] = None, task_name: Optional[str] = None, task_block: Optional[Union[transformers4rec.torch.block.base.BlockBase, transformers4rec.torch.block.base.BuildableBlock]] = None, loss=BCELoss(), metrics=(BinaryPrecision(), BinaryRecall(), BinaryAccuracy()), summary_type='first')[source] Bases:
transformers4rec.torch.model.base.PredictionTask
-
DEFAULT_LOSS
= BCELoss()
-
DEFAULT_METRICS
= (BinaryPrecision(), BinaryRecall(), BinaryAccuracy())
-
-
class
transformers4rec.torch.model.prediction_task.
RegressionPrepareBlock
[source] Bases:
transformers4rec.torch.block.base.BuildableBlock
-
build
(input_size) → transformers4rec.torch.block.base.SequentialBlock[source]
-
-
class
transformers4rec.torch.model.prediction_task.
RegressionTask
(target_name: Optional[str] = None, task_name: Optional[str] = None, task_block: Optional[Union[transformers4rec.torch.block.base.BlockBase, transformers4rec.torch.block.base.BuildableBlock]] = None, loss=MSELoss(), metrics=(MeanSquaredError()), summary_type='first')[source] Bases:
transformers4rec.torch.model.base.PredictionTask
-
DEFAULT_LOSS
= MSELoss()
-
DEFAULT_METRICS
= (MeanSquaredError(),)
-
-
class
transformers4rec.torch.model.prediction_task.
NextItemPredictionTask
(loss: torch.nn.modules.module.Module = NLLLoss(), metrics: Iterable[torchmetrics.metric.Metric] = (NDCGAt(), AvgPrecisionAt(), RecallAt()), task_block: Optional[Union[transformers4rec.torch.block.base.BlockBase, transformers4rec.torch.block.base.BuildableBlock]] = None, task_name: str = 'next-item', weight_tying: bool = False, softmax_temperature: float = 1, padding_idx: int = 0, target_dim: Optional[int] = None)[source] Bases:
transformers4rec.torch.model.base.PredictionTask
This block performs item prediction task for session and sequential-based models. It requires a body containing a masking schema to use for training and target generation. For the supported masking schemes, please refers to: https://nvidia-merlin.github.io/Transformers4Rec/main/model_definition.html#sequence-masking
- Parameters
loss (torch.nn.Module) – Loss function to use. Defaults to NLLLos.
metrics (Iterable[torchmetrics.Metric]) – List of ranking metrics to use for evaluation.
task_block – Module to transform input tensor before computing predictions.
task_name (str, optional) – Name of the prediction task, if not provided a name will be automatically constructed based on the target-name & class-name.
weight_tying (bool) – The item id embedding table weights are shared with the prediction network layer.
softmax_temperature (float) – Softmax temperature, used to reduce model overconfidence, so that softmax(logits / T). Value 1.0 reduces to regular softmax.
padding_idx (int) – pad token id.
target_dim (int) – vocabulary size of item ids
-
DEFAULT_METRICS
= (NDCGAt(), AvgPrecisionAt(), RecallAt())
-
build
(body, input_size, device=None, inputs=None, task_block=None, pre=None)[source] Build method, this is called by the Head.
-
forward
(inputs: torch.Tensor, targets=None, training=False, testing=False, **kwargs)[source]
-
calculate_metrics
(predictions, targets) → Dict[str, torch.Tensor][source]
-
class
transformers4rec.torch.model.prediction_task.
NextItemPredictionPrepareBlock
(target_dim: int, weight_tying: bool = False, item_embedding_table: Optional[torch.nn.modules.module.Module] = None, softmax_temperature: float = 0)[source] Bases:
transformers4rec.torch.block.base.BuildableBlock
-
build
(input_size) → transformers4rec.torch.block.base.Block[source]
-