transformers4rec.tf.block package
Submodules
transformers4rec.tf.block.base module
- 
class transformers4rec.tf.block.base.Block(*args, **kwargs)[source]
- Bases: - transformers4rec.config.schema.SchemaMixin,- keras.engine.base_layer.Layer
- 
class transformers4rec.tf.block.base.SequentialBlock(*args, **kwargs)[source]
- Bases: - transformers4rec.tf.block.base.Block- The SequentialLayer represents a sequence of Keras layers. It is a Keras Layer that can be used instead of tf.keras.layers.Sequential, which is actually a Keras Model. In contrast to keras Sequential, this layer can be used as a pure Layer in tf.functions and when exporting SavedModels, without having to pre-declare input and output shapes. In turn, this layer is usable as a preprocessing layer for TF Agents Networks, and can be exported via PolicySaver. Usage: - c = SequentialLayer([layer1, layer2, layer3]) output = c(inputs) # Equivalent to: output = layer3(layer2(layer1(inputs))) - 
property inputs
 - 
property trainable_weights
 - 
property non_trainable_weights
 - 
property trainable
 - 
property losses
 - 
property regularizers
 
- 
property 
transformers4rec.tf.block.dlrm module
- 
class transformers4rec.tf.block.dlrm.ExpandDimsAndToTabular(*args, **kwargs)[source]
- Bases: - keras.layers.core.lambda_layer.Lambda
- 
class transformers4rec.tf.block.dlrm.DLRMBlock(*args, **kwargs)[source]
- Bases: - transformers4rec.tf.block.base.Block- 
classmethod from_schema(schema: merlin_standard_lib.schema.schema.Schema, bottom_mlp: Union[keras.engine.base_layer.Layer, transformers4rec.tf.block.base.Block], top_mlp: Optional[Union[keras.engine.base_layer.Layer, transformers4rec.tf.block.base.Block]] = None, **kwargs)[source]
 
- 
classmethod 
transformers4rec.tf.block.mlp module
transformers4rec.tf.block.transformer module
- 
class transformers4rec.tf.block.transformer.TransformerPrepare(*args, **kwargs)[source]
- Bases: - keras.engine.base_layer.Layer
- 
class transformers4rec.tf.block.transformer.TransformerBlock(*args, **kwargs)[source]
- Bases: - transformers4rec.tf.block.base.Block- Class to support HF Transformers for session-based and sequential-based recommendation models. - Parameters
- transformer (TransformerBody) – The T4RecConfig, The pre-trained HF model or the custom keras layer TF*MainLayer, related to specific transformer architecture. 
- masking – Needed when masking is applied on the inputs. 
 
 - 
TRANSFORMER_TO_PREPARE: Dict[Type[transformers.modeling_tf_utils.TFPreTrainedModel], Type[transformers4rec.tf.block.transformer.TransformerPrepare]] = {}
 - 
transformer: transformers.modeling_tf_utils.TFPreTrainedModel
 - 
prepare_module: Optional[transformers4rec.tf.block.transformer.TransformerPrepare]
 - 
classmethod from_registry(transformer: str, d_model: int, n_head: int, n_layer: int, total_seq_length: int, masking: Optional[transformers4rec.tf.masking.MaskSequence] = None)[source]
- Load the HF transformer architecture based on its name - Parameters
- transformer (str) – Name of the Transformer to use. Possible values are : [“reformer”, “gtp2”, “longformer”, “electra”, “albert”, “xlnet”] 
- d_model (int) – size of hidden states for Transformers 
- n_head – Number of attention heads for Transformers 
- n_layer (int) – Number of layers for RNNs and Transformers” 
- total_seq_length (int) – The maximum sequence length