transformers4rec.torch.tabular package
Submodules
transformers4rec.torch.tabular.aggregation module
- 
class transformers4rec.torch.tabular.aggregation.ConcatFeatures(*args, **kwargs)[source]
- Bases: - transformers4rec.torch.tabular.base.TabularAggregation- Aggregation by stacking all values in TabularData, all non-sequential values will be converted to a sequence. - The output of this concatenation will have 3 dimensions. - 
forward(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
 
- 
- 
class transformers4rec.torch.tabular.aggregation.StackFeatures(axis: int = - 1)[source]
- Bases: - transformers4rec.torch.tabular.base.TabularAggregation- Aggregation by stacking all values in input dictionary in the given dimension. - Parameters
- axis (int, default=-1) – Axis to use for the stacking operation. 
 - 
forward(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
 
- 
class transformers4rec.torch.tabular.aggregation.ElementwiseFeatureAggregation(*args, **kwargs)[source]
- Bases: - transformers4rec.torch.tabular.base.TabularAggregation
- 
class transformers4rec.torch.tabular.aggregation.ElementwiseSum[source]
- Bases: - transformers4rec.torch.tabular.aggregation.ElementwiseFeatureAggregation- Aggregation by first stacking all values in TabularData in the first dimension, and then summing the result. - 
forward(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
 
- 
- 
class transformers4rec.torch.tabular.aggregation.ElementwiseSumItemMulti(schema: Optional[merlin_standard_lib.schema.schema.Schema] = None)[source]
- Bases: - transformers4rec.torch.tabular.aggregation.ElementwiseFeatureAggregation- Aggregation by applying the ElementwiseSum aggregation to all features except the item-id, and then multiplying this with the item-ids. - Parameters
- schema (DatasetSchema) – 
 - 
forward(inputs: Dict[str, torch.Tensor]) → torch.Tensor[source]
 - 
REQUIRES_SCHEMA= True
 
transformers4rec.torch.tabular.tabular module
transformers4rec.torch.tabular.transformations module
- 
class transformers4rec.torch.tabular.transformations.StochasticSwapNoise(schema=None, pad_token=0, replacement_prob=0.1)[source]
- Bases: - transformers4rec.torch.tabular.base.TabularTransformation- Applies Stochastic replacement of sequence features. It can be applied as a pre transform like TransformerBlock(pre=”stochastic-swap-noise”) - 
forward(inputs: Union[torch.Tensor, Dict[str, torch.Tensor]], input_mask: Optional[torch.Tensor] = None, **kwargs) → Union[torch.Tensor, Dict[str, torch.Tensor]][source]
 - 
augment(input_tensor: torch.Tensor, mask: Optional[torch.Tensor] = None) → torch.Tensor[source]
 
- 
- 
class transformers4rec.torch.tabular.transformations.TabularLayerNorm(features_dim: Optional[Dict[str, int]] = None)[source]
- Bases: - transformers4rec.torch.tabular.base.TabularTransformation- Applies Layer norm to each input feature individually, before the aggregation - 
classmethod from_feature_config(feature_config: Dict[str, transformers4rec.torch.features.embedding.FeatureConfig])[source]
 - 
forward(inputs: Dict[str, torch.Tensor], **kwargs) → Dict[str, torch.Tensor][source]
 
- 
classmethod 
- 
class transformers4rec.torch.tabular.transformations.TabularDropout(dropout_rate=0.0)[source]
- Bases: - transformers4rec.torch.tabular.base.TabularTransformation- Applies dropout transformation. - 
forward(inputs: Union[torch.Tensor, Dict[str, torch.Tensor]], **kwargs) → Union[torch.Tensor, Dict[str, torch.Tensor]][source]
 
-