merlin.models.tf.AverageEmbeddingsByWeightFeature#

class merlin.models.tf.AverageEmbeddingsByWeightFeature(*args, **kwargs)[source]#

Bases: keras.engine.base_layer.Layer

__init__(weight_feature_name: str, axis=1, **kwargs)[source]#

Computes the weighted average of a Tensor based on one of the input features. Typically used as a combiner for EmbeddingTable for aggregating sequential embedding features

Parameters
  • weight_feature_name (str) – Name of the feature to be used as weight for average

  • axis (int, optional) – Axis for reduction, by default 1 (assuming the 2nd dim is the sequence length)

Methods

__init__(weight_feature_name[, axis])

Computes the weighted average of a Tensor based on one of the input features.

add_loss(losses, **kwargs)

Add loss tensor(s), potentially dependent on layer inputs.

add_metric(value[, name])

Adds metric tensor to the layer.

add_update(updates)

Add update op(s), potentially dependent on layer inputs.

add_variable(*args, **kwargs)

Deprecated, do NOT use! Alias for add_weight.

add_weight([name, shape, dtype, ...])

Adds a new variable to the layer.

build(input_shape)

Creates the variables of the layer (for subclass implementers).

build_from_config(config)

call(inputs, features)

Performs the weighted average calculation.

compute_mask(inputs[, mask])

Computes an output mask tensor.

compute_output_shape(input_shape)

Computes the output shape.

compute_output_signature(input_signature)

Compute the output tensor signature of the layer based on the inputs.

count_params()

Count the total number of scalars composing the weights.

finalize_state()

Finalizes the layers state after updating layer weights.

from_config(config)

Creates a layer from its config.

from_schema_convention(schema[, ...])

Infers the weight features corresponding to sequential embedding features based on the feature name suffix.

get_build_config()

get_config()

Returns the configuration of the layer.

get_input_at(node_index)

Retrieves the input tensor(s) of a layer at a given node.

get_input_mask_at(node_index)

Retrieves the input mask tensor(s) of a layer at a given node.

get_input_shape_at(node_index)

Retrieves the input shape(s) of a layer at a given node.

get_output_at(node_index)

Retrieves the output tensor(s) of a layer at a given node.

get_output_mask_at(node_index)

Retrieves the output mask tensor(s) of a layer at a given node.

get_output_shape_at(node_index)

Retrieves the output shape(s) of a layer at a given node.

get_weights()

Returns the current weights of the layer, as NumPy arrays.

set_weights(weights)

Sets the weights of the layer, from NumPy arrays.

with_name_scope(method)

Decorator to automatically enter the module name scope.

Attributes

activity_regularizer

Optional regularizer function for the output of this layer.

compute_dtype

The dtype of the layer's computations.

dtype

The dtype of the layer weights.

dtype_policy

The dtype policy associated with this layer.

dynamic

Whether the layer is dynamic (eager-only); set in the constructor.

inbound_nodes

Return Functional API nodes upstream of this layer.

input

Retrieves the input tensor(s) of a layer.

input_mask

Retrieves the input mask tensor(s) of a layer.

input_shape

Retrieves the input shape(s) of a layer.

input_spec

InputSpec instance(s) describing the input format for this layer.

losses

List of losses added using the add_loss() API.

metrics

List of metrics added using the add_metric() API.

name

Name of the layer (string), set in the constructor.

name_scope

Returns a tf.name_scope instance for this class.

non_trainable_variables

non_trainable_weights

List of all non-trainable weights tracked by this layer.

outbound_nodes

Return Functional API nodes downstream of this layer.

output

Retrieves the output tensor(s) of a layer.

output_mask

Retrieves the output mask tensor(s) of a layer.

output_shape

Retrieves the output shape(s) of a layer.

stateful

submodules

Sequence of all sub-modules.

supports_masking

Whether this layer supports computing a mask using compute_mask.

trainable

trainable_variables

trainable_weights

List of all trainable weights tracked by this layer.

updates

variable_dtype

Alias of Layer.dtype, the dtype of the weights.

variables

Returns the list of all layer variables/weights.

weights

Returns the list of all layer variables/weights.

call(inputs, features)[source]#

Performs the weighted average calculation.

Parameters
  • inputs (tf.Tensor) – Input tensor.

  • features (dict) – Dictionary of features, must include the weight feature.

Returns

Output tensor after applying the weighted average calculation.

Return type

Tensor

Raises

ValueError – If the inputs is a tf.RaggedTensor, the weight feature should also be a tf.RaggedTensor.

compute_output_shape(input_shape)[source]#

Computes the output shape.

Parameters

input_shape (tf.TensorShape) – Shape of the input.

Returns

Shape of the output, which is the same as the input shape in this case.

Return type

tf.TensorShape

static from_schema_convention(schema: merlin.schema.schema.Schema, weight_features_name_suffix: str = '_weight')[source]#

Infers the weight features corresponding to sequential embedding features based on the feature name suffix. For example, if a sequential categorical feature is called item_id_seq, if there is another feature in the schema called item_id_seq_weight, then it will be used for weighted average. If a weight feature cannot be found for a given seq cat. feature then standard mean is used as combiner

Parameters
  • schema (Schema) – The feature schema

  • weight_features_name_suffix (str) – Suffix to look for a corresponding weight feature

Returns

A dict where the key is the sequential categorical feature name and the value is an instance of WeightedAverageByFeature with the corresponding weight feature name

Return type

Dict[str, WeightedAverageByFeature]

get_config()[source]#

Returns the configuration of the layer.

Returns

A dictionary containing the configuration of the layer.

Return type

dict